-
938
-
807
-
691
-
639
-
562
Pliki do pobrania
Książka poświęcona jest inteligentnym systemom informatycznym w organizacji, wykorzystującym rozproszone źródła informacji niestrukturalnej dostępne w sieci Internet.
W przeciwieństwie do strukturalnych źródeł danych (w formie plikowej lub baz danych) wykorzystywanych przez tradycyjne systemy informatyczne zarządzania, źródła internetowe mają charakter przede wszystkim dokumentów nieposiadających ściśle zdefiniowanej struktury semantycznej i schematu zawartości. Uzyskanie wyższej jakości przetwarzania tego rodzaju informacji niestrukturalnej wymaga inteligentnego zachowania systemu informatycznego, przede wszystkim w formie „zrozumienia” analizowanego dokumentu.
Gontar B. (red.) (2019), Zarządzanie danymi w organizacji, Wydawnictwo UŁ, Łodź.
Kisielnicki J. (2013), Systemy informatyczne zarządzania, Agencja Wydawnicza Placet, Warszawa.
McDonald J.R., Burt G.M., Zieliński J.S., McArthur S.D., Knight U.G., Masucco S., Moyes A., Weir B., Young D.J. (1997), Intelligent knowledge based systems in electric power systems, Chapman & Hall, London.
Miller J. (2018), Integrating IIoT equipment into manufacturing systems, „Control Engineering” 2018.08.01.
Miną dziesięciolecia zanim komputer kwantowy trafi pod strzechy (2019), „Polityka”, nr 46, s. 65.
Mulawka J.J. (1996), Systemy ekspertowe, WNT, Warszawa.
Sidigue N., Hojjat A. (2013), Computational Intelligence, Wiley.
Sun Y., Ansan M. (2016), Edge IoT: Mobile Edge Computing for the Internet of Things, „Communication”, vol. 54, No. 12, s. 22–29.
Tadeusiewicz R. (1993), Sieci neuronowe, Akademicka Oficyna Wydawnicza, Warszawa.
Vermessan O., Friess P. (2014), Internet of Things – From Research and Innovation to Market Deployment, River Publisher, Aalborg.
Wiltz C. (2019), AI Could Make Quantum Computers a Reality, „Design News”, 2019.02.06.
Zieliński J.S. (1984), Inżynieria systemowa, Skrypt. Uniwersytet Łódzki.
Zieliński J.S. (2018), Wpływ Smart Grid na informatyczny system zarządzania elektroenergetyką, „Przegląd Organizacji”, nr 10, s. 46–48.
Zieliński J.S. (2019), Sztuczna inteligencja i nowe narzędzia w elektroenergetyce, „Biuletyn Techniczno-Informacyjny SEP, Oddział Łódzki”, nr 2, s. 18–20.
Zieliński J.S., Jęczkowska B., Górnicki W., Kopczyńska D., Kupras A. (1993), Systemy ekspertowe wspomagające dyspozytorów w systemie elektroenergetycznym, „Energetyka”, nr 5, s. 156–160.
Acid S., de Campos L.M., Fernandez-Luna J.M., Huete J.F. (2003), An information retrieval model based on simple Bayesian networks, „International Journal of Intelligent Systems”, vol. 18, s. 251–265.
Ahmad N., Beg M. (2002), Fuzzy logic based rank aggregation methods for the World Wide Web, „Proc. of the Intl. Conference on Artificial Intelligence in Engineering and Technology (ICAIET02)”, s. 363–368.
Ailon N. (2009), A Simple Linear Ranking Algorithm Using Query Dependent Intercept Variables, [w:] M. Boughanem, C. Berrut, J. Mothe, C. Soule-Dupuy (red.) Advances in Information Retrieval (ECIR 2009), „Lecture Notes in Computer Science”, vol. 5478, Springer, s. 685–690.
Aslam J.A., Montague M. (2001), Models for metasearch, „Proc. of the 24th ACM SIGIR Conf. on Research and Development in Information Retrieval (SIGIR 01)”, s. 276–284.
Baeza-Yates R., Ribeiro-Neto B. (1999), Modern information retrieval, Addison Wesley, Harlow.
Beg M.M.S. (2004), Parallel rank aggregation for the World Wide Web, „World Wide Web Journal”, vol. 6, no. 1, s. 5–22.
Belew R.K. (1987), A Connectionist Approach to Conceptual Information Retrieval, „Proceedings of the International Conference on Artificial Intelligence and Law”, Baltimore, s. 116–126.
Belew R.K. (1989), Adaptive information retrieval: Using a connectionist representation to retrieve and learn about documents, „Proc of the ACM SIGIR conference on Research and Development in Information Retrieval”, s. 11–20.
Belew R.K. (2000), Finding out about. A cognitive perspective on search engine technology and the WWW, Cambridge University Press, Cambridge.
Berger H., Dittenbach M., Merkl D. (2004), An Adaptive Information Retrieval System Based on Associative Networks, Conceptual Modelling, „APCCM’04: Proceedings of the First Asia-Pacific Conference on Conceptual Modelling”, Vol. 31, s. 18–22.
Bookstein A. (1980), Fuzzy requests: an approach to weighted Boolean searches, „Journal of the American Society for Information Science”, vol. 31, no. 4, s. 240–247.
Bordogna G., Pasi G.A. (1993), Fuzzy linguistic approach generalizing Boolean IR: a model and its evaluation, „Journal of the American Society for Information Science”, vol. 44, no. 2, s. 70–82.
Bordogna G., Pasi G. (1995), Linguistic Aggregation Operators of Selection Criteria in Fuzzy Information Retrieval, „International Journal of Intelligent Systems”, vol. 10, no. 2, s. 233–248.
Bordogna G., Pasi G. (2000), Application of Fuzzy Set Theory to Extend Boolean Information Retrieval, [w:] F. Crestani, G. Pasi (red.), Soft Computing in Information Retrieval. Techniques and Applications, Springer, s. 21–47.
Boughanem M., Brini A., Dubois D. (2009), Possibilistic networks for information retrieval, „International Journal of Approximate Reasoning”, vol. 50, s. 957–968.
Brini A., Boughanem M., Dubois D. (2005), A model for information retrieval based on possibilistic networks, „Proc. of the Symposium on String Processing and Information Retrieval, Buenos Aires, Argentina, November 2–4”, s. 271–282.
Brini A., de Campos L.M., Dubois D., Boughanem M. (2005), Query propagation in possibilistic information retrieval networks, „Proc. of the Joint 4th Conference of the European Society for Fuzzy Logic and Technology and the 11th Rencontres Francophones sur la Logique Floue et ses Applications, Barcelona, Spain, September 7–9”, s. 1281–1286.
Buitelaar P., Cimiano P. (red.) (2008), Ontology Learning and Population – Bridging the Gap from Text to Knowledge, IOS Press.
Burges, C.J. (2010), From RankNet to LambdaRank to LambdaMART, Microsoft Research Technical Report MSR-TR-2010-82.
Burges C.J., Ragno R., Le Q.V. (2007), Learning to rank with nonsmooth cost functions, „Advances in Neural Information Processing Systems 19 (NIPS 2006)”, s. 395–402.
Burges C.J., Shaked T., Renshaw E., Lazier A., Deeds M., Hamilton N., Hullender G. (2005), Learning to rank using gradient descent, „Proc. of the 22nd International Conference on Machine Learning (ICML05)”, s. 89–96.
Cambazoglu B.B., Aykanat C. (2006), Performance of query processing implementations in ranking-based text retrieval systems using inverted indices, „Information Processing and Management”, vol. 42, no. 4, s. 875–898.
Campos L.M. de, Fernandez J.M., Huete J.F. (1998), Query expansion in information retrieval systems using a Bayesian network-based thesaurus, „Proc. of the 14th Uncertainty in Artificial Intelligence Conference”, s. 53–60.
Campos L.M. de, Fernandez-Luna J.M., Huete J.F. (2002), A layered Bayesian network model for document retrieval, [w:] F. Crestani, M. Girolami, van C.J. Rijsbergen (red.), Advances in Information Retrieval, Lecture Notes in Computer Science 2291, Springer, s. 169–182.
Campos L.M. de, Fernandez-Luna J.M., Huete J.F. (2003), The BNR model: foundations and performance of a Bayesian network-based retrieval model, „International Journal of Approximate Reasoning”, vol. 34, s. 265–285.
Cao Y., Xu J., Liu T.-Y., Li H., Huang Y., Hon H.-W. (2006), Adapting ranking SVM to document retrieval, „Proc. of the 29th ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR06)”, s. 186–193.
Cao Z., Qin T., Liu T.Y., Tsai M.F., Li H. (2007), Learning to rank: from pairwise approach to listwise approach, „Proc. of the 24th International Conference on Machine Learning (ICML 2007)”, s. 129–136.
Carvalho V.R., Elsas J.L., Cohen W.W., Carbonel J.G. (2008), A meta-learning approach for robust rank learning, „SIGIR 2008 Workshop on Learning to Rank for Information Retrieval (LR4IR08)”, s. 2352–2360.
Chapelle O., Keerthi S.S. (2010), Efficient algorithms for ranking with SVMs, „Information Retrieval Journal”, vol. 13, no. 3, s. 201–215.
Chen H. (1992), Knowledge-Based Document Retrieval: Framework and Design, „Journal of Information Science: Principles & Practice”, vol. 18, no. 3, s. 293–314.
Chen H. (1995), Machine learning for information retrieval: neural networks, symbolic learning and genetic algorithms, „Journal of the American Society for Information Science”, vol. 46, no. 3, s. 194–216.
Chen H., Dhar V. (1991), Cognitive Process as a Basis for Intelligent Retrieval Systems Design, „Information Processing and Management”, vol. 27, no. 5, s. 405–432.
Chu W., Ghahramani Z. (2005), Gaussian processes for ordinal regression, „Journal of Machine Learning Research”, vol. 6, s. 1019–1041.
Chu W., Ghahramani Z. (2005a), Preference learning with Gaussian processes, „Proc. of the 22nd International Conference on Machine Learning (ICML05)”, s. 137–144.
Chu W., Keerthi S.S. (2005), New approaches to support vector ordinal regression, „Proc. of the 22nd International Conference on Machine Learning (ICML 05)”, s. 145–152.
Cichosz P. (2000), Systemy uczące się, WNT, Warszawa.
Cimiano P. (2006), Ontology Learning and Population from Text. Algorithms, Evaluation and Applications, Springer.
Cleverdon C.W. (1991), The significance of the Cranfield tests on index languages, „Proc. of the ACM SIGIR Conference on Research and Development in Information Retrieval”, s. 3–12.
Cohen P.R., Kjeldsen R. (1987), Information Retrieval by constrained spreading activation on Sematic Networks, „Information Processing & Management”, vol. 23, no. 4, s. 255–268.
Cohen W.W., Schapire R.E., Singer Y. (1998), Learning to order things, „Advances in Neural Information Processing Systems 10 (NIPS97)”, MIT Press, s. 451–457.
Cohen W.W., Schapire R.E., Singer Y. (1999), Learning to order things, „Journal of Artificial Intelligence Research”, vol. 10, s. 243–270.
Cooper W.S., Gey F.C., Dabney D.P. (1992), Probabilistic retrieval based on staged logistic regression, „Proc. of the 15th International ACM SIGIR Conference on Research and Development in Information Retrieval”, s. 198–210.
Cormen T.H., Leiserson Ch.E., Rivest R.L, Stein C. (2017), Wprowadzenie do algorytmów, Wydawnictwo Naukowe PWN, Warszawa.
Cortes C., Mohri M., Rastogi A. (2007), Magnitude-preserving ranking algorithms, „Proc. of the 24th Intl Conf. on Machine Learning (ICML07)”, s. 169–176.
Cossock D., Zhang T. (2006), Subset ranking using regression, „Proc. of the 19th Annual Conference on Learning Theory (COLT 2006)”, s. 605–619.
Cowell P.G., Dawid A.P., Lauritzen S.L., Spiegelhalter D.J. (1999), Probabilistic Networks and Expert Systems, Springer.
Crammer K., Singer Y. (2002), Pranking with ranking, „Proc. of the 14th International Conference on Neural Information Processing Systems: Natural and Synthetic (NIPS 01)”, MIT Press, s. 641–647.
Crestani F. (1997), Application of spreading activation techniques in information retrieval, „Artificial Intelligence Review”, vol. 11, no. 6, s. 453–482.
Crestani F., Pasi G. (1999), Soft information retrieval: Applications of fuzzy set theory and neural networks, [w:] N. Kasabov, R. Kozma (red.), Neuro-Fuzzy Techniques for Intelligent Information Systems, Springer, s. 287–315.
Crestani F., van Rijsbergen C.J. (1997), A Model for Adaptive Information Retrieval, „Journal of Intelligent Information Systems”, vol. 8, s. 29–56.
Croft W., Thompson R.H. (1987), I3R: a new approach to the design of Document Retrieval Systems, „Journal of the American Society for Information Science”, vol. 38, no. 6, s. 389–404.
Croft W., Lucia T., Cohen P. (1988), Retrieving documents by plausible inference: a preliminary study, „Proc. of ACM SIGIR conference on Research and Development in Information Retrieval”, s. 481–494.
Croft W., Metzler D., Strohman T. (2009), Search Engines: Information Retrieval in Practice, Pearson.
Croft W., Lucia T., Crigean J., Willet P. (1989), Retrieving documents by plausible inference: an experimental study, „Information Processing & Management”, vol. 25, no. 6, s. 599–614.
Dominich S. (2001), Mathematical Foundations of Information Retrieval, Kluwer.
Dominich S. (2008), The Modern Algebra of Information Retrieval, Springer Verlag, Berlin–Heidelberg.
Donmez P., Svore K.M., Burges C.J. (2009), On the local optimality of Lambda Rank, „Proc. of the 32nd Annual International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR 2009)”, s. 460–467.
Dwork C., Kumar R., Naor M., Sivakumar D. (2001), Rank aggregation methods for the web, „Proceedings of the 10th International Conference on World Wide Web (WWW01)”, s. 613–622.
Fagin R., Kumar R., Sivakumar D. (2003), Efficient similarity search and classification via rank aggregation, „Proc. of the ACM SIGMOD International Conference on Management of Data (SIGMOD03)”, s. 301–312.
Fox E.A. (1987), Development of the Coder system: A testbed for artificial intelligence methods in information retrieval, „Information Processing & Management”, vol. 23, no. 4, s. 341–366.
Frakes W.B., Baeza-Yates R. (1992), Information Retrieval: Data Structures & Algorithms, Prentice Hall.
Freund Y., Iyer R., Schapire R., Singer Y. (2003), An efficient boosting algorithm for combining preferences, „Journal of Machine Learning Research”, vol. 4, s. 933–969.
Fuhr N. (1989), Optimum polynomial retrieval functions based on the probability ranking principle, „ACM Transactions on Information Systems”, vol. 7, no. 3, s. 183–204.
Gey F.C. (1994), Inferring probability of relevance using the method of logistic regression, „Proc. of the 17th International ACM SIGIR Conference on Research and Development in Information Retrieval”, s. 222–231.
Harrington B. (2009), ASKNet: Automatically Creating Semantic Knowledge Networks from Natural Language Text, PhD Thesis, University of Oxford.
Harrington B. (2010), A Semantic Network Approach to Measuring Relatedness, „Proc. of the 23rd International Conference on Computational Linguistics (COLING 2010), Beijing China”.
Harrington B., Clark S. (2009), ASKNet: Creating and Evaluating Large Scale Integrated Semantic Networks, „International Journal of Semantic Computing”, vol. 2, no. 3, s. 343–364.
Harrington E.F. (2003), Online ranking/collaborative filtering using the perceptron algorithm, „Proceedings of the 20th International Conference on Machine Learning (ICML 2003)”, s. 250–257.
Herbrich R., Graepel T., Obermayer K. (1999), Support Vector Learning for Ordinal Regression, „Proceedings of the 9th International Conference on Artificial Neural Networks, Edinburgh”, s. 97–102.
Herbrich R., Obermayer K., Graepel T. (2000), Large margin rank boundaries for ordinal regression, [w:] A.J. Smola, P.L. Bartlett, B. Schölkopf, D. Schuurmans (red.), Advances in Large Margin Classifiers, MIT Press, Cambridge, MA, s. 115–132.
Jensen F.V., Nielsen T.D. (2007), Bayesian Networks and Decision Graphs, Springer.
Jo H. (2019), Text Mining. Concepts, Implementation, and Big Data Challenge, Springer.
Joachims T. (2002), Optimizing search engines using clickthrough data, „Proc. of the 8th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD02)”, s. 133–142.
Joachims T. (2006), Training linear SVMs in linear time, „Proc. of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD06)”, s. 217–226.
Kjærulff U.B, Madsen A.L. (2013), Bayesian Networks and Influence Diagrams: A Guide to Construction and Analysis, Springer.
Koronacki J., Ćwik J. (2015), Statystyczne systemy uczące się, Exit, Warszawa.
Koski T., Noble J.M. (2009), Bayesian Networks. An Introduction, Wiley.
Kowalski G. (2011), Information Retrieval. Architecture and Algorithms, Springer.
Li P., Burges C., Wu Q. (2008), McRank: learning to rank using multiple classification and gradient boosting, „Advances in Neural Information Processing Systems 20 (NIPS 07)”, s. 845–852.
Liu T.-Y. (2009), Learning to Rank for Information Retrieval, „Foundation and Trends in Information Retrieval”, vol. 3, no. 3, s. 225–331.
Liu T.-Y. (2011), Learning to Rank for Information Retrieval, Springer.
Manning C.D., Raghavan P., Shütze H. (2007), An introduction to information retrieval, Cambridge University Press.
Matveeva I., Burges C., Burkard T., Laucius A., Wong L. (2006), High accuracy retrieval with multiple nested ranker, „Proc. of the 29th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR06)”, s. 437–444.
Mitra B., Craswell N. (2017), Neural Models for Information Retrieval, arXiv:1705.01509.
Mitra B., Craswell N. (2018), An Introduction to Neural Information Retrieval, „Foundations and Trends in Information Retrieval”, vol. 13, no. 1, s. 1–126.
Miyamoto S. (1990), Fuzzy Sets In Information Retrieval And Cluster Analysis, Kluwer.
Mozer M.C. (1984), Inductive Information Retrieval using parallel distributed computation, Technical Report, Institute for Cognitive Science, University of California, San Diego, USA.
Nallapati R. (2004), Discriminative models for information retrieval, „Proc. of the 27th International ACM SIGIR Conference on Research and Development in Information Retrieval”, s. 64–71.
Neapolitan R.E. (2003), Learning Bayesian Networks, Prentice-Hall.
Onal K.D., Zhang Y., Altingovde I.S., Rahman M.M., Karagoz P., Braylan A., Dang B., Chang H.L., Kim H., McNamara Q., Angert A., Banner E., Khetan V., McDonnell T., Nguyen A.T., Xu D., Wallace B.C., de Rijke M., Lease M. (2018), Neural Information Retrieval: At the End of the Early Years, „Information Retrieval”, vol. 21, no. 2–3, s. 111–182.
Pantel P., Pennacchiotti M. (2008), Automatically Harvesting and Ontologizing Semantic Relations, „Proc. of the 2008 conference on Ontology Learning and Population: Bridging the Gap between Text and Knowledge”, IOS Press, s. 171–195.
Pearl J. (1988), Probabilistic reasoning in intelligent systems: networks of plausible inference, Morgan Kaufmann.
Qin T., Liu T.-Y., Lai W., Zhang X.-D., Wang D.-S., Li H. (2007), Ranking with multiple hyperplanes, „Proc. of the 30th ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR07)”, s. 279–286.
Qin T., Liu T.Y., Li H. (2009), A general approximation framework for direct optimization of information retrieval measures, „Information Retrieval”, vol. 13, no. 4, s. 375–397.
Qin T., Zhang X.-D., Tsai M.-F., Wang D.-S., Liu T.-Y., Li H. (2008), Query-level loss functions for information retrieval, „Information Processing and Management”, vol. 44, no. 2, s. 838–855.
Radecki T. (1979), Fuzzy set theoretical approach to document retrieval, „Information Processing and Management”, vol. 15, no. 5, s. 247–260.
Rennie J.D.M., Srebro N. (2005), Loss functions for preference levels: regression with discrete ordered labels, „IJCAI 2005 Multidisciplinary Workshop on Advances in Preference Handling” ACM, New York.
Ribeiro-Neto B., Muntz R. (1996), A belief network model for IR, „Proc. of the 19th annual international ACM SIGIR Conference on Research and Development in Information Retrieval”, s. 253–260.
Ribeiro-Neto B., Silva I., Muntz R. (2000), Bayesian Network Models for Information Retrieval, [w:] F. Crestani, G. Pasi (red.), Soft Computing in Information Retrieval. Techniques and Applications, Physica-Verlag, Heidelberg, s. 259–291.
Richardson S.D., Dolan W.B., Vanderwende L. (1998), MindNet: acquiring and structuring semantic information from text, „Proc. of the 36th Annual Meeting of the Association for Computational Linguistics and 17th International Conference on Computational Linguistics, Vol. 2, s. 1098–1102.
Rigutini L., Papini T., Maggini M., Scarselli F. (2008), Learning to rank by a neural-based sorting algorithm, „Proceedings of the SIGIR 2008 Workshop Learning to Rank for Information Retrieval”, s. 1–8.
Rigutini L., Papini T., Maggini M., Scarselli F. (2011), Learning to rank by a neural preference function, „IEEE Trans. on Neural Networks”, vol. 22 , no. 9, s. 1368–1380.
Robertson S.E. (1997), The probability ranking principle in IR, „Journal of Documentation”, vol. 33, no. 4, s. 294–304, przedruk w: K. Sparck Jones, P. Willett (red.), Readings in information retrieval, Morgan Kaufmann, s. 281–286.
Rudin C. (2006), Ranking with a p-norm push, „Proc. of the 19th Annual Conference on Learning Theory (COLT06)”, s. 589–604.
Rudin C. (2009), P-norm push: A Simple Convex Ranking Algorithm that Concentrates at the Top of the List, „Journal of Machine Learning Research”, vol. 10, s. 2233–2271.
Salton G. (1968), Automatic information organization and retrieval, McGraw-Hill.
Salton G. (1991), The smart project in automatic document retrieval, „Proceedings of the 14th ACM SIGIR Conference on Research and development in information retrieval”, s. 356–358.
Salton G., Buckley C. (1987), Term-weighting approaches in automatic text retrieval, „Information Processing and Management”, vol. 24, no. 5, s. 513–523.
Salton G., McGill M.J. (1983), Introduction to modern information retrieval. McGraw-Hill.
Salton G., Wong A., & Yang C.S. (1975), A vector space model for automatic indexing, „Communications of the ACM”, vol. 18, no. 11, s. 613–620.
Sanderson M., Croft W.B. (1999), Deriving concept hierarchies from text, „Proc. of the 22nd ACM SIGIR Conference on Research and Development in Information Retrieval”, s. 206–213.
Shashua A., Levin A. (2003), Ranking with large margin principles: two approaches, „Advances in Neural Information Processing Systems” 15, s. 937–944.
Shoval P. (1981), Expert/consultation system for a retrieval data-base with semantic network of concepts, „ACM SIGIR Forum”, vol. 16, no. 1, s. 145–149.
Shoval P. (1985), Principles, procedures and rules in an expert system for information retrieval, „Information Processing & Management”, vol. 21, no. 6, s. 475–487.
Sparck Jones K. (1991), The role of Artificial Intelligence in information retrieval, „Journal of the American Society for Information Science”, vol. 42, no. 8, s. 558–565.
Taylor M., Guiver J., Robertson S., Minka T. (2008), Softrank: optimising non-smooth rank metrics, „Proc. of the 1st International Conference on Web Search and Web Data Mining (WSDM 2008)”, s. 77–86.
Turtle H. (1991), Inference Networks for Document Retrieval, Ph.D. Thesis, University of Massachusetts.
Turtle H., Croft W. (1990), Inference networks for document retrieval, „Proc. of the 13th ACM SIGIR Conference on Research and Development in Information Retrieval”, s. 1–24.
Turtle H., Croft W.B. (1991), Evaluation of an inference network-based retrieval model, „ACM Transactions on Information Systems”, vol. 9, no. 3, s. 187–222.
Volkovs M.N., Zemel R.S. (2009), Boltzrank: learning to maximize expected ranking gain, „Proc. of the 26th International Conference on Machine Learning (ICML 2009)”, s. 1089–1096.
Wilkinson R., Hingston P. (1991), Using the cosine measure in a neural network for document retrieval, „Proc. of the ACM SIGIR Conference on Research and Development in Information Retrieval”, s. 202–210.
Wu G., Li J., Feng L., Wang K. (2008), Identifying potentially important concepts and relations in an ontology, „Proc. of the 7th International Semantic Web Conference, Lecture Notes in Computer Science”, vol. 5318, Springer, s. 33–49.
Xia F., Liu T.Y., Wang J., Zhang W., Li H. (2008), Listwise approach to learning to rank – theorem and algorithm, „Proc. of the 25th International Conference on Machine Learning (ICML 2008)”, s. 1192–1199.
Xu J., Li H. (2007), Adarank: a boosting algorithm for information retrieval, „Proc. of the 30th ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR 2007)”, s. 391–398.
Yager R.R. (1987), A note on weighted queries in information retrieval systems, „Journal of the American Society for Information Science”, vol. 38, no. 1, s. 23–24.
Yager R.R. (1988), On ordered weighted averaging aggregation operators in multi-criteria decision making, „IEEE Trans. on Systems, Man and Cybernetics”, vol. 18, no. 1, s. 183–190.
Yager R.R. (1996), Quantifier guided aggregation using OWA operators, „International Journal of Intelligent Systems”, vol. 11, no. 1, s. 49–73.
Yager R.R. (2000), A Framework for Linguistic and Hierarchical Queries in Document Retrieval, [w:] F. Crestani, G. Pasi (red.), Soft Computing in Information Retrieval. Techniques and Applications, Springer, s. 3–20.
Zadrożny S., Kacprzyk J. (2005), An Extended Fuzzy Boolean Model of Information Retrieval Revisited, „Proc. of the 14th IEEE International Conference on Fuzzy Systems”, s. 1020–1025.
Zhang Y., Rahman M., Braylan A., Dang B., Chang H.-L., Kim H., McNamara Q., Angert A., Banner E., Khetan V., McDonnell T., Nguyen A.T., Xu D., Wallace B., Lease M. (2017), Neural Information Retrieval: A Literature Review, Raport Techniczny, arXiv:1611.06792.
Berners-Lee T. (2000), Semantic Web – XML2000, prezentacja on-line, W3C, https://www.w3.org/2000/Talks/1206-xml2k-tbl/ (dostęp: 30.10.2020).
Biedrzycki N. (2018), Rzeczywistość stapia się ze światem cyfrowym. AR to nie tylko Pokemon Go, https://businessinsider.com.pl/technologie/nowe-technologie/ar-czym-jest-rozszerzona-rzeczywistosc/qn6173n, 04.03.2018, (dostęp: 01.10.2019).
Czerwonka P. (2016), Zastosowanie chmury obliczeniowej w polskich organizacjach, Wydawnictwo Biblioteka, Łódź.
Duhigg C. (2012), Siła Nawyku. Dlaczego robimy to, co robimy i jak można to zmienić w życiu i biznesie, Wydawnictwo Naukowe PWN, Warszawa.
Galitsky B. (2019), Developing Enterprise Chatbots, Springer.
Golbeck J., Hendler J. (2007), A Semantic Web approach to the provenance challenge, „Concurrency and Computation: Practice and Experience”, vol. 20, Issue 5, s. 431–439.
Gonciarski W. (2010), Gospodarka cyfrowa – powstanie i etapy rozwoju, [w:] W. Gonciarski (red.), Zarządzanie w warunkach gospodarki cyfrowej, WAT, Warszawa, s. 11–38.
Gonciarski W. (2017), Koncepcja zarządzania 2.0 jako konsekwencja rewolucji cyfrowej, Studia Ekonomiczne, „Zeszyty Naukowe Uniwersytetu Ekonomicznego w Katowicach”, nr 338, s. 38–53.
Henssen D.J.H.A., van den Heuvel L., De Jong G., Vorstenbosch M.A.T.M., van Cappellen van Walsum A.‐M., Van den Hurk M.M., Kooloos J.G.M., Bartels R.H.M.A. (2020),
Neuroanatomy Learning: Augmented Reality vs. Cross‐Sections, „Anatomical Sciences Education”, vol. 13, no. 3, s. 353–365.
Hiraoka T., Neubig G., Yoshino K., Toda T., Nakamura S. (2017), Active Learning for Example-based Dialog Systems, [w:] K. Jokinen, G. Wilcock (red.), Dialogues with Social Robots, Springer, s. 67–78.
Kempa A. (2017), Wprowadzenie do WPF – Tworzenie aplikacji w WPF przy użyciu XAML i C#, Helion, Gliwice.
Kifer M. (2008), Rule Interchange Format: The Framework, [w:] D. Calvanese, G. Lausen (red.) Web Reasoning and Rule Systems. Proceedings of Second International Conference, RR 2008, Karlsruhe, Germany, 31 October–1 November 2008, „Lecture Notes in Computer Science”, vol. 5341, s. 1–11.
Kifer M., Boley H. (2010), RIF Overview (Documentation), https://www.w3.org/ TR/2010/NOTE-rif-overview-20100622 (dostęp: 16.09.2019).
Malinowski G. (2010), Logika ogólna, Wydawnictwo Naukowe PWN, Warszawa, s. 18.
Mayer-Schonberge V., Cukier L. (2014), Big-Data – Rewolucja, która zmieni nasze myślenie, pracę i życie, MT Biznes, Warszawa.
Mazurek G. (2019), Transformacja Cyfrowa – Perspektywa Marketingu, Wydawnictwo Naukowe PWN, Warszawa.
Mell P., Grance T. (2019), The NIST Definition of Cloud Computing – Recommendation od the National Institute of Standards and Technology, https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-145.pdf (dostęp: 28.09.2019).
Mlodinow L. (2016), Nieświadomy mozg – jak to, co dzieje się za progiem świadomości, wpływa na nasze życie, Prószyński Media, Warszawa, s. 98.
RDF (2009), RDF (Documentation), https://www.w3.org/RDF/ (dostęp: 14.09.2019).
Rifkin J. (2001), Koniec pracy, Wydawnictwo Dolnośląskie, Wrocław.
Settles B. (2019), Active Learning Literature Survey, „Computer Sciences Technical Report”, 1648, University of Wisconsin–Madison, Updated on: January 26, 2019, www.burrsettles.com/pub/settles.activelearning.pdf (dostęp: 15.05.2019).
Thomas R., McSharry P. (2015), Big Data Revolution, Wiley, Chichester.
Unicode (2019), Unicode, https://www.unicode.org/versions/Unicode12.0.0/ch01.pdf (dostęp: 14.09.2019).
Zieliński J.S. (2000), Zarys badań nad sztuczną inteligencją, [w:] J.S. Zieliński (red.), Inteligentne systemy w zarządzaniu. Teoria i praktyka, Wydawnictwo Naukowe PWN, Warszawa.
Utwór dostępny jest na licencji Creative Commons Uznanie autorstwa – Użycie niekomercyjne – Bez utworów zależnych 4.0 Międzynarodowe.
Opublikowane: 12 października 2023
Zgodnie z Komunikatem Prorektora UŁ ds. nauki dotyczącym systemu ScienceON od 15.09.2023 r. Wydawnictwo Uniwersytetu Łódzkiego wprowadza dane o wszystkich publikacjach wydanych przez siebie autorstwa pracowników UŁ.
Publikacja ww. danych jest możliwa po opublikowaniu pracy w wersji ostatecznej i w terminie do 30 dni od opublikowania.