-
938
-
807
-
691
-
639
-
562
Pliki do pobrania
Since the pioneering work of Dixmier and Segal in the early 50’s, the theory of noncommutative LP-spaces has grown into a very refined and important theory with wide applications. Despite this fact there is as yet no self-contained peer-reviewed introduction to the most general version of this theory in print. The present work aims to fill this vacuum, in the process giving fresh impetus to the theory. The first part of the book presents: the introductory theory of von Neumann algebras – also including the slightly less common theory of generalized positive operators; the various notions of measurability, allowing the interpretation of unbounded affiliated operators as “quantum”" measurable functions, with the crucial notion of τ-measurability developed in more detail; Jordan *-morphisms (representing quantum measurable transformations) that behave well with regard to τ-measurability; and finally the different types of weights that occur naturally in the theory, before presenting a Radon-Nikodym theorem for such weights. The core, second part of the book is devoted to first developing the noncommutative theory of decreasing rearrangements, before using that technology to present the basic theory of LP and Orlicz spaces for semifinite algebras, and then the notion of crossed product, as well as the technology underlying it, indispensable for the theory of Haagerup LP-spaces for general von Neumann algebras. With this as a foundation, we are then finally ready to present the basic structural theory of not only Haagerup LP-spaces, but also Orlicz spaces for general von Neumann algebras.
Charles A. Akemann, Joel Anderson, and Gert K. Pedersen. Triangle inequalities in operator algebras. Linear and Multilinear Algebra, 11(2):167–178, 1982.
Huzihiro Araki and Tetsuya Masuda. Positive cones and Lp-spaces for von Neumann algebras. Publ. Res. Inst. Math. Sci., 18(2):759–831 (339–411), 1982.
William Arveson. An invitation to C∗-algebras. Springer-Verlag, New York–Heidelberg, 1976. Graduate Texts in Mathematics, No. 39.
William Arveson. A short course on spectral theory, volume 209 of Graduate Texts in Mathematics. Springer-Verlag, New York, 2002.
Maryam H. A. Al-Rashed and Bogusław Zegarliński. Noncommutative Orlicz spaces associated to a state. Studia Math., 180(3):199–209, 2007.
Lawrence G. Brown and Hideki Kosaki. Jensen’s inequality in semi-finite von Neumann algebras. J. Operator Theory, 23(1):3–19, 1990.
D.P. Blecher and L.E. Labuschagne. Von neumann algebraic Hp theory. In Proceedings of the Fifth Conference on Function Spaces, volume 435 of Contemporary Mathematics, pages 89–114. Amer. Math. Soc., 2007.
B. Blackadar. Operator algebras, volume 122 of Encyclopaedia of Mathematical Sciences. Springer-Verlag, Berlin, 2006. Theory of C∗-algebras and von Neumann algebras, Operator Algebras and Non-commutative Geometry, III.
Ola Bratteli and Derek W. Robinson. Operator algebras and quantum statistical mechanics. 1. Texts and Monographs in Physics. Springer-Verlag, New York, second edition, 1987. C⚹- and W⚹-algebras, symmetry groups, decomposition of states.
Ola Bratteli and Derek W. Robinson. Operator algebras and quantum statistical mechanics. 1. Texts and Monographs in Physics. Springer-Verlag, New York, second edition, 1987. C⚹- and W⚹-algebras, symmetry groups, decomposition of states.
Colin Bennett and Robert Sharpley. Interpolation of operators, volume 129 of Pure and Applied Mathematics. Academic Press, Inc., Boston, MA, 1988.
M. Caspers. The Lp-fourier transform on locally compact quantum groups. J. Operator Theory, 69(1):161–193, 2013.
Martijn Caspers and Mikael de la Salle. Schur and Fourier multipliers of an amenable group acting on non-commutative Lp-spaces. Trans. Amer. Math. Soc., 367(10):6997–7013, 2015.
Carlo Cecchini. On two definitions of measurable and locally measurable operators. Boll. Un. Mat. Ital. A (5), 15(3):526–534, 1978.
F. Cipriani, U. Franz, and A. Kula. Symmetries of Lévy processes on compact quantum groups, their Markov semigroups and potential theory. J. Funct. Anal., 266(5):2789–2844, 2014.
François Combes. Poids et espérances conditionnelles dans les algèbres de von Neumann. Bull. Soc. Math. France, 99:73–112, 1971.
Alain Connes. Une classification des facteurs de type III. Ann. Sci. École Norm. Sup. (4), 6:133–252, 1973.
A. Connes. On the spatial theory of von Neumann algebras. J. Functional Analysis, 35(2):153–164, 1980.
Martijn Caspers, Javier Parcet, Mathilde Perrin, and Éric Ricard. Noncommutative de Leeuw theorems. Forum Math. Sigma, 3:e21, 59, 2015.
Ioana Ciorănescu and László Zsidó. Analytic generators for one-parameter groups. Tohoku Math. J. (2), 28(3):327–362, 1976.
Kenneth R. Davidson. C⚹-algebras by example, volume 6 of Fields Institute Monographs. American Mathematical Society, Providence, RI, 1996.
Peter G. Dodds, Theresa K.-Y. Dodds, and Ben de Pagter. Noncommutative Banach function spaces. Math. Z., 201(4):583–597, 1989.
Peter G. Dodds, Theresa K. Dodds, and Ben de Pagter. Fully symmetric operator spaces. Integral Equations Operator Theory, 15(6):942–972, 1992.
Peter G. Dodds, Theresa K.-Y. Dodds, and Ben de Pagter. Noncommutative Köthe duality. Trans. Amer. Math. Soc., 339(2):717–750, 1993.
P.G. Dodds, B. de Pagter, and F. Sukochev. Theory of noncommutative integration. work in progress.
M. Daws, P. Fima, A. Skalski, and S. White. The Haagerup property for locally compact quantum groups. J. Reine Angew. Math., 711:189–229, 2016.
Trond Digernes. Duality for weights on covariant systems and its applications. ProQuest LLC, Ann Arbor, MI, 1975. Thesis (Ph.D.) – University of California, Los Angeles.
J. Dixmier. Formes linéaires sur un anneau d’opérateurs. Bull. Soc. Math. France, 81:9–39, 1953.
Jacques Dixmier. Les algèbres d’opérateurs dans l’espace hilbertien (Algèbres de von Neumann). Cahiers scientifiques, Fascicule XXV. Gauthier-Villars, Paris, 1957.
P. G. Dixon. Unbounded operator algebras. Proc. London Math. Soc. (3), 23:53–69, 1971.
Jacques Dixmier. von Neumann algebras, volume 27 of North-Holland Mathematical Library. North-Holland Publishing Co., Amsterdam–New York, 1981. With a preface by E. C. Lance, Translated from the second French edition by F. Jellett.
Jacques Dixmier. Les algèbres d’opérateurs dans l’espace hilbertien (algèbres de von Neumann). Les Grands Classiques Gauthier-Villars. [GauthierVillars Great Classics]. Éditions Jacques Gabay, Paris, 1996. Reprint of the second (1969) edition.
Jacques Dixmier. Les C⚹-algèbres et leurs représentations. Les Grands Classiques Gauthier-Villars. [Gauthier-Villars Great Classics]. Éditions Jacques Gabay, Paris, 1996. Reprint of the second (1969) edition.
M. Daws, P. Kasprzak, A. Skalski, and P.M. Soltan. Closed quantum subgroups of locally compact quantum groups. Adv. Math., 231(6):3473–3501, 2012.
R. J. DiPerna and P.-L. Lions. On the Fokker-Planck-Boltzmann equation. Comm. Math. Phys., 120(1):1–23, 1988.
R. J. DiPerna and P.-L. Lions. On the Cauchy problem for Boltzmann equations: global existence and weak stability. Ann. of Math. (2), 130(2):321–366, 1989.
B. de Pagter. Non-commutative Banach function spaces. In Positivity, Trends Math., pages 197–227. Birkhäuser, 2007.
Peter A. Fillmore. A user’s guide to operator algebras. Canadian Mathematical Society Series of Monographs and Advanced Texts. John Wiley & Sons, Inc., New York, 1996. A Wiley-Interscience Publication.
M. Fragoulopoulou, A. Inoue, and M. Weigt. Tensor products of unbounded operator algebras. Rocky Mountain J. Math., 44(3):895–912, 2014.
Bent Fuglede and Richard V. Kadison. Determinant theory in finite factors. Ann. of Math. (2), 55:520–530, 1952.
Thierry Fack and Hideki Kosaki. Generalized s-numbers of τ-measurable operators. Pacific J. Math., 123(2):269–300, 1986.
U. Franz and A. Skalski. On idempotent states on quantum groups. J. Algebra, 322(5):1774–1802, 2009.
L. Terrell Gardner. An inequality characterizes the trace. Canadian J. Math., 31(6):1322–1328, 1979.
Stanisław Goldstein and J. Martin Lindsay. KMS-symmetric Markov semigroups. Math. Z., 219(4):591–608, 1995.
Stanisław Goldstein and J. Martin Lindsay. Markov semigroups KMSsymmetric for a weight. Math. Ann., 313(1):39–67, 1999.
Stanisław Goldstein, J. Martin Lindsay, and Adam Skalski. Nonsymmetric Dirichlet forms on nontracial von Neumann algebras. work in progress.
Stanisław Goldstein and Adam Paszkiewicz. Infinite measures on von Neumann algebras. Internat. J. Theoret. Phys., 54(12):4341–4348, 2015.
Uffe Haagerup. Normal weights on W⚹-algebras. J. Functional Analysis, 19:302–317, 1975.
Uffe Haagerup. The standard form of von Neumann algebras. Math. Scand., 37(2):271–283, 1975.
Uffe Haagerup. On the dual weights for crossed products of von Neumann algebras. I. Removing separability conditions. Math. Scand., 43(1):99–118, 1978.
Uffe Haagerup. On the dual weights for crossed products of von Neumann algebras. II. Application of operator-valued weights. Math. Scand., 43(1):119–140, 1978.
Uffe Haagerup. Lp-spaces associated with an arbitrary von Neumann algebra. In Algèbres d’opérateurs et leurs applications en physique mathématique (Proc. Colloq., Marseille, 1977), volume 274 of Colloq. Internat. CNRS, pages 175–184. CNRS, Paris, 1979.
Uffe Haagerup. Operator-valued weights in von Neumann algebras. I. J. Functional Analysis, 32(2):175–206, 1979.
Uffe Haagerup. Operator-valued weights in von Neumann algebras. II. J. Functional Analysis, 33(3):339–361, 1979.
Michel Hilsum. Les espaces Lp d’une algèbre de von Neumann définies par la derivée spatiale. J. Functional Analysis, 40(2):151–169, 1981.
Uffe Haagerup, Marius Junge, and Quanhua Xu. A reduction method for noncommutative Lp-spaces and applications. Trans. Amer. Math. Soc., 362(4):2125–2165, 2010.
Herbert Halpern and Victor Kaftal. Compact operators in type IIIλ and type III0 factors. Math. Ann., 273(2):251–270, 1986.
Herbert Halpern and Victor Kaftal. Compact operators in type IIIλ and type III0 factors. II. Tohoku Math. J. (2), 39(2):153–173, 1987.
Herbert Halpern, Victor Kaftal, and László Zsidó. Finite weight projections in von Neumann algebras. Pacific J. Math., 147(1):81–121, 1991.
G. H. Hardy, J. E. Littlewood, and G. Pólya. Some simple inequalities satisfied by convex functions. Messenger of Math., 58:145–152, 1929.
G. H. Hardy, J. E. Littlewood, and G. Pólya. Inequalities. Cambridge Mathematical Library. Cambridge University Press, Cambridge, 1988. Reprint of the 1952 edition.
Henryk Hudzik and Lech Maligranda. Amemiya norm equals Orlicz norm in general. Indag. Math. (N.S.), 11(4):573–585, 2000.
G-X Ji. A noncommutative version of Hp and characterizations of subdiagonal subalgebras. Integr Equ Oper Theory, 72:131–149, 2012.
G-X Ji. Analytic toeplitz algebras and the Hilbert transform associated with a subdiagonal algebra. Sc.i China Math., 57(3):579–588, 2014.
Marius Junge, Tao Mei, and Javier Parcet. Smooth Fourier multipliers on group von Neumann algebras. Geom. Funct. Anal., 24(6):1913–1980, 2014.
M. Junge, M. Neufang, and Z-J Ruan. A representation theorem for locally compact quantum groups. Internat. J. Math., 20(3):377–400, 2009.
Marius Junge, Zhong-Jin Ruan, and David Sherman. A classification for 2-isometries of noncommutative Lp-spaces. Israel J. Math., 150:285–314, 2005.
Victor Kaftal. On the theory of compact operators in von Neumann algebras. I. Indiana Univ. Math. J., 26(3):447–457, 1977.
Victor Kaftal. On the theory of compact operators in von Neumann algebras. II. Pacific J. Math., 79(1):129–137, 1978.
Irving Kaplansky. Rings of operators. W. A. Benjamin, Inc., New York– Amsterdam, 1968.
Yitzhak Katznelson. An introduction to harmonic analysis. Cambridge Mathematical Library. Cambridge University Press, Cambridge, third edition, 2004.
J. L. Kelley and Isaac Namioka. Linear topological spaces. With the collaboration of W. F. Donoghue, Jr., Kenneth R. Lucas, B. J. Pettis, Ebbe Thue Poulsen, G. Baley Price, Wendy Robertson, W. R. Scott, Kennan T. Smith. The University Series in Higher Mathematics. D. Van Nostrand Co., Inc., Princeton, N.J., 1963.
Hideki Kosaki. Applications of the complex interpolation method to a von Neumann algebra: noncommutative Lp-spaces. J. Funct. Anal., 56(1):29–78, 1984.
Hideki Kosaki. On the continuity of the map φ → |φ| from the predual of a W⚹ -algebra. J. Funct. Anal., 59(1):123–131, 1984.
S. G. Kreĭn, Yu. I. Petunın, and E. M. Semënov. Interpolation of linear operators, volume 54 of Translations of Mathematical Monographs. American Mathematical Society, Providence, R.I., 1982. Translated from the Russian by J. Szűcs.
Richard V. Kadison and John R. Ringrose. Fundamentals of the theory of operator algebras. Vol. I, volume 100 of Pure and Applied Mathematics. Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York, 1983. Elementary theory.
Richard V. Kadison and John R. Ringrose. Fundamentals of the theory of operator algebras. Vol. II, volume 100 of Pure and Applied Mathematics. Academic Press, Inc., Orlando, FL, 1986. Advanced theory.
R. A. Kunze. Lp Fourier transforms on locally compact unimodular groups. Trans. Amer. Math. Soc., 89:519–540, 1958.
Wolfgang Kunze. Noncommutative Orlicz spaces and generalized Arens algebras. Math. Nachr., 147:123–138, 1990.
Louis E. Labuschagne. A crossed product approach to Orlicz spaces. Proc. Lond. Math. Soc. (3), 107(5):965–1003, 2013.
Louis Labuschagne. Invariant subspaces for H2 spaces of σ-finite algebras. Bull. Lond. Math. Soc., 49(1):33–44, 2017.
L.E. Labuschagne and W.A. Majewski. Dynamics on noncommutative orlicz spaces. Acta Math. Sci. (to appear) see arXiv:1605.01210 [math-ph].
Louis E. Labuschagne and Władysław A. Majewski. Maps on noncommutative Orlicz spaces. Illinois J. Math., 55(3):1053–1081 (2013), 2011.
Labuschagne and W. A. Majewski. Integral and differential structures for quantum field theory, 2017. arXiv:1702.00665.
W. A. Majewski. On quantum statistical mechanics: A study guide. Adv. Math. Phys, (2):Article ID 9343717, 2017.
M. A. Muratov and V. I. Chilin. Topological algebras of measurable and locally measurable operators. Sovrem. Mat. Fundam. Napravl., 61:115–163, 2016.
W. Adam Majewski and Louis E. Labuschagne. On applications of Orlicz spaces to statistical physics. Ann. Henri Poincaré, 15(6):1197–1221, 2014.
W. A. Majewski and L. E. Labuschagne. On entropy for general quantum systems, 2018. arXiv:1804.05579, to appear in Adv. Theor. Math. Phys.
Gerard J. Murphy. C∗-algebras and operator theory. Academic Press, Inc., Boston, MA, 1990.
Julian Musielak. Orlicz spaces and modular spaces, volume 1034 of Lecture Notes in Mathematics. Springer-Verlag, Berlin, 1983.
F. J. Murray and J. von Neumann. On rings of operators. Ann. of Math. (2), 37(1):116–229, 1936.
F. J. Murray and J. von Neumann. On rings of operators. II. Trans. Amer. Math. Soc., 41(2):208–248, 1937.
F. J. Murray and J. von Neumann. On rings of operators. IV. Ann. of Math. (2), 44:716–808, 1943.
M. A. Naĭmark. Normed algebras. Wolters-Noordhoff Publishing, Groningen, third edition, 1972. Translated from the second Russian edition by Leo F. Boron, Wolters-Noordhoff Series of Monographs and Textbooks on Pure and Applied Mathematics.
Edward Nelson. Notes on non-commutative integration. J. Functional Analysis, 15:103–116, 1974.
Constantin P. Niculescu and Lars-Erik Persson. Convex functions and their applications, volume 23 of CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC. Springer, New York, 2006. A contemporary approach.
S. Neuwirth and E. Ricard. Transfer of Fourier multipliers into Schur multipliers and sumsets in a discrete group. Canad. J. Math., 63(5):1161–1187, 2011.
Gert K. Pedersen. Analysis now, volume 118 of Graduate Texts in Mathematics. Springer-Verlag, New York, 1989.
Gert K. Pedersen. C⚹ -algebras and their automorphism groups. Pure and Applied Mathematics (Amsterdam). Academic Press, London, 2018. Second edition of [ MR0548006], Edited and with a preface by Søren Eilers and Dorte Olesen.
Robert T. Powers. Representations of uniformly hyperfinite algebras and their associated von Neumann rings. Ann. of Math. (2), 86:138–171, 1967.
Giovanni Pistone and Carlo Sempi. An infinite-dimensional geometric structure on the space of all the probability measures equivalent to a given one. Ann. Statist., 23(5):1543–1561, 1995.
Gert K. Pedersen and Masamichi Takesaki. The Radon-Nikodym theorem for von Neumann algebras. Acta Math., 130:53–87, 1973.
Gilles Pisier and Quanhua Xu. Non-commutative Lp-spaces. In Handbook of the geometry of Banach spaces, Vol. 2, pages 1459–1517. North-Holland, Amsterdam, 2003.
Walter Rudin. Real and complex analysis. McGraw-Hill Book Co., New York–Düsseldorf–Johannesburg, second edition, 1974. McGraw-Hill Series in Higher Mathematics.
Shôichirô Sakai. A characterization of W⚹-algebras. Pacific J. Math., 6:763–773, 1956.
Shôichirô Sakai. C⚹ -algebras and W⚹-algebras. Springer-Verlag, New York–Heidelberg, 1971. Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 60.
S. Sankaran. The ⚹-algebra of unbounded operators. J. London Math. Soc., 34:337–344, 1959.
Lothar M. Schmitt. The Radon-Nikodým theorem for Lp-spaces of W⚹ -algebras. Publ. Res. Inst. Math. Sci., 22(6):1025–1034, 1986.
I. E. Segal. A non-commutative extension of abstract integration. Ann. of Math. (2), 57:401–457, 1953.
David Sherman. Noncommutative Lp structure encodes exactly Jordan structure. J. Funct. Anal., 221(1):150–166, 2005.
Şerban Strătilă. Modular theory in operator algebras. Editura Academiei Republicii Socialiste România, Bucharest; Abacus Press, Tunbridge Wells, 1981. Translated from the Romanian by the author.
R. F. Streater. Quantum Orlicz spaces in information geometry. Open Syst. Inf. Dyn., 11(4):359–375, 2004.
A. I. Stolyarov, O. E. Tikhonov, and A. N. Sherstnev. Characterization of normal traces on von Neumann algebras by inequalities for the modulus. Mat. Zametki, 72(3):448–454, 2002.
V. S. Sunder. An invitation to von Neumann algebras. Universitext. Springer-Verlag, New York, 1987.
Stephen J. Summers and Reinhard Werner. Maximal violation of Bell’s inequalities is generic in quantum field theory. Comm. Math. Phys., 110(2):247–259, 1987.
Anton Ströh and Graeme P. West. τ -compact operators affiliated to a semifinite von Neumann algebra. Proc. Roy. Irish Acad. Sect. A, 93(1):73–86, 1993.
H. H. Schaefer and M. P. Wolff. Topological vector spaces, volume 3 of Graduate Texts in Mathematics. Springer-Verlag, New York, second edition, 1999.
Şerban Strătilă and László Zsidó. Lectures on von Neumann algebras. Editura Academiei, Bucharest; Abacus Press, Tunbridge Wells, 1979. Revision of the 1975 original, Translated from the Romanian by Silviu Teleman.
M. Takesaki. Tomita’s theory of modular Hilbert algebras and its applications. Lecture Notes in Mathematics, Vol. 128. Springer-Verlag, Berlin-New York, 1970.
M. Takesaki. Theory of operator algebras. I, volume 124 of Encyclopaedia of Mathematical Sciences. Springer-Verlag, Berlin, 2002. Reprint of the first (1979) edition, Operator Algebras and Non-commutative Geometry, 5.
M. Takesaki. Theory of operator algebras. II, volume 125 of Encyclopaedia of Mathematical Sciences. Springer-Verlag, Berlin, 2003. Operator Algebras and Non-commutative Geometry, 6.
M. Takesaki. Theory of operator algebras. III, volume 127 of Encyclopaedia of Mathematical Sciences. Springer-Verlag, Berlin, 2003. Operator Algebras and Non-commutative Geometry, 8.
Zs. Tarcsay. On form sums of positive operators. Acta Math. Hungar., 140(1– 2):187–201, 2013.
M. Terp. Lp spaces associated with von Neumann algebras. Rapport No 3a, Københavns Universitet, Mathematisk Institut, 1981.
Marianne Terp. Interpolation spaces between a von Neumann algebra and its predual. J. Operator Theory, 8(2):327–360, 1982.
Marianne Terp. Lp Fourier transformation on non-unimodular locally compact groups. Adv. Oper. Theory, 2(4):547–583, 2017.
J. Tomiyama. Tensor products and projections of norm one in von Neumann algebras. Lecture Notes, University of Copenhagen, 1970.
N. V. Trunov. Locally finite weights on von Neumann algebras (in Russian). Dep. VINITI No. 101-79, Kazan. Gos. Univ., Kazan′, 1978. No. 101–79.
N. V. Trunov. On the theory of normal weights on von Neumann algebras (in Russian). Izv. Vyssh. Uchebn. Zaved. Mat., (8):61–70, 1982.
N. V. Trunov. Locally finite weights on von Neumann algebras, and quadratic forms (in Russian). In Constructive theory of functions and functional analysis, No. V, pages 80–94. Kazan. Gos. Univ., Kazan′, 1985.
Stefaan Vaes. A Radon-Nikodym theorem for von Neumann algebras. J. Operator Theory, 46(3, suppl.):477–489, 2001.
A. van Daele. Continuous crossed products and type III von Neumann algebras, volume 31 of London Mathematical Society Lecture Note Series. Cambridge University Press, Cambridge-New York, 1978.
Cédric Villani. A review of mathematical topics in collisional kinetic theory. In Handbook of mathematical fluid dynamics, Vol. I, pages 71–305. NorthHolland, Amsterdam, 2002.
J. v. Neumann. Zur Algebra der Funktionaloperationen und Theorie der normalen Operatoren. Math. Ann., 102(1):370–427, 1930.
J. v. Neumann. On rings of operators. III. Ann. of Math. (2), 41:94–161, 1940.
John von Neumann. On rings of operators. Reduction theory. Ann. of Math. (2), 50:401–485, 1949.
Martin Weigt. Jordan homomorphisms between algebras of measurable operators. Quaest. Math., 32(2):203–214, 2009.
Quanhua Xu. On the maximality of subdiagonal algebras. J. Operator Theory, 54(1):137–146, 2005.
Quanhua Xu. Operator spaces and noncommutative Lp. Online, 2007. Summer School on Banach spaces and Operator spaces, Nankia University.
F. J. Yeadon. Convergence of measurable operators. Proc. Cambridge Philos. Soc., 74:257–268, 1973.
F. J. Yeadon. Non-commutative Lp-spaces. Math. Proc. Cambridge Philos. Soc., 77:91–102, 1975.
F. J. Yeadon. Isometries of noncommutative Lp-spaces. Math. Proc. Cambridge Philos. Soc., 90(1):41–50, 1981.
F. J. Yeadon. On a result of P. G. Dixon. J. London Math. Soc. (2), 9:610– 612, 1974/75.
Jakob Yngvason. The role of type III factors in quantum field theory. Rep. Math. Phys., 55(1):135–147, 2005.
Bogusław Zegarliński. Log-Sobolev inequalities for infinite one-dimensional lattice systems. Comm. Math. Phys., 133(1):147–162, 1990.
Ke He Zhu. An introduction to operator algebras. Studies in Advanced Mathematics. CRC Press, Boca Raton, FL, 1993.
Utwór dostępny jest na licencji Creative Commons Uznanie autorstwa – Użycie niekomercyjne – Bez utworów zależnych 4.0 Międzynarodowe.
Opublikowane: 12 października 2023
Zgodnie z Komunikatem Prorektora UŁ ds. nauki dotyczącym systemu ScienceON od 15.09.2023 r. Wydawnictwo Uniwersytetu Łódzkiego wprowadza dane o wszystkich publikacjach wydanych przez siebie autorstwa pracowników UŁ.
Publikacja ww. danych jest możliwa po opublikowaniu pracy w wersji ostatecznej i w terminie do 30 dni od opublikowania.