-
938
-
807
-
691
-
639
-
562
Pliki do pobrania
Monografia poświęcona jest badaniu kombinatorycznych konfiguracji punktowych uzyskanych z odwzorowania zbioru konfiguracji kombinatorycznych na przestrzeń euklidesową. Przedstawiono różne metody tego mapowania, wraz z typologią i właściwościami powstałych konfiguracji. Ponadto badanie dotyczy wielotopów kombinatorycznych zdefiniowanych jako wypukłe kadłuby kombinatorycznych konfiguracji punktowych. Główny nacisk położony jest na badanie konfiguracji punktów multipermutacji i częściowych punktów multipermutacji wraz z powiązanymi z nimi kombinatorycznymi politopami, znanymi jako multipermutoedry i częściowe multipermutoedry. Nasz wkład teoretyczny jest uzasadniony dowodem twierdzeń i wspierającymi je stwierdzeniami pomocniczymi. Aby ułatwić zrozumienie materiału, załączono przykłady i ilustracje.
Anjos, M.F., Lasserre, J.B.: Handbook on Semidefinite, Conic and Polynomial Optimization. Springer, 2012th edn.
Aprile, M., Cevallos, A., Faenza, Y.: On Vertices and Facets of Combinatorial 2-Level Polytopes. In: Combinatorial Optimization. pp. 177–188. Springer, Cham (May 2016). https://doi.org/10.1007/978-3-319-45587-7_16
Balas, E., Ceria, S., Cornu´ejols, G.: A lift-and-project cutting plane algorithm for mixed 0–1 programs. Mathematical Programming 58(1-3), 295–324 (Jan 1993). https://doi.org/10.1007/BF01581273
Balinski, M.L., Hoffman, A.J. (eds.): Polyhedral Combinatorics: Dedicated to the Memory of D.R.Fulkerson. Elsevier Science Ltd, Amsterdam ; New York : New York (1978)
Baumeister, B.: On permutation polytopes. Advances in Mathematics 222(2), 431–452 (Oct 2009), http://resolver.scholarsportal.info/resolve/00018708/v222i0002/431_-opp.xml
Berge, C.: Principles of Combinatorics. Academic Press (Apr 2012)
Bergeron, F., Labelle, G., Leroux, P.: Combinatorial Species and Tree-like Structures.
Cambridge University Press, Cambridge ; New York, NY, USA, 1st edn. (Nov 1997) 219
Bohn, A., Faenza, Y., Fiorini, S., Fisikopoulos, V., Macchia, M., Pashkovich, K.: Enumeration of 2-Level Polytopes. In: Algorithms - ESA 2015, pp. 191–202. Springer, Berlin, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48350-3_17
Bona, M.: Combinatorics of Permutations. Chapman and Hall/CRC, 2nd edn. (Apr 2016)
Brualdi, R.A.: Combinatorial matrix classes. Encyclopedia of Mathematics and its Applications, 108., Cambridge University Press, Cambridge (2006)
Colbourn, C.J.: Handbook of Combinatorial Designs. CRC Press (2010), google-Books-ID: g6LDYlJ36CgC
Deza, A., Fukuda, K., Mizutani, T., Vo, C.: On the face lattice of the metric polytope. In: Akiyama, J., Kano, M. (eds.) Discrete and Computational Geometry. pp. 118–128. Lecture Notes in Computer Science, Springer (2003). https://doi.org/10.1007/978-3-540-44400-8_12
Dixon, J.D., Mortimer, B.: Permutation Groups. Springer, New York, USA, 1996 edn.n(Apr 1996)
Donets, G.O., Koliechkina, L.: Extremal problems on combinatorial configurations. RVV PUET, Poltava, Ukraine (2011), Bibliography http://dspace.puet.edu.ua/handle/123456789/560
Emets’, O.O., Roskladka, O.V., Nedobachii, S.I.: Irreducible System of Constraints for a General Polyhedron of Arrangements. Ukrainian Mathematical Journal 55(1), 1–12 (Jan 2003). https://doi.org/10.1023/A:1025060316418
Fiorini, S., Fisikopoulos, V., Macchia, M.: Two-Level Polytopes with a Prescribed Facet. In: Combinatorial Optimization. pp. 285–296. Springer, Cham (May 2016). https://doi.org/10.1007/978-3-319-45587-7_25
Grande, F., Ru´e, J.: Many 2-Level Polytopes from Matroids. Discrete & Computational Geometry 54(4), 954–979 (Oct 2015). https://doi.org/10.1007/s00454-015-9735-5
Gricik, V.V., Shevchenko, A.I., Kiselyova, O., Yakovlev, S., Stetsyuk, P.: Mathematical methods of optimization and intellectual computer technologies of modeling of complex processes and systems with considering object space forms. Education and Science, Doneck, Ukraine (2012), http://www.ams.org/mathscinet-getitem?mr=894255
Gropp, H.: Configurations between geometry and combinatorics. Discrete Applied Mathematics 138(1), 79–88 (Mar 2004). https://doi.org/10.1016/S0166-218X(03)00271-3
Gruber, P.M.: Convex and Discrete Geometry. Springer, softcover reprint of hardcover 1st ed. 2007 edn.
Grunbaum, B.: Configurations of Points and Lines. American Mathematical Society, Providence, R.I, new edn. (Jun 2009)
Harary, F., Hayes, J.P., Wu, H.J.: A survey of the theory of hypercube graphs. Computers & Mathematics with Applications. An International Journal 15(4), 277–289 (1988)
Henk, M., Richter-Gebert, J., Ziegler, G.M.: Basic properties of convex polytopes. In: Goodman, J.E., O’Rourke, J. (eds.) Handbook of Discrete and Computational Geometry, pp. 243–270. CRC Press, Inc., Boca Raton, FL, USA (1997), http://dl.acm.org/citation.cfm?id=285869.285884
Hulianytskyi, L.F.: On formalization and classification of combinatorial optimization problems. Optimal Decision Theory 7, 45–49 (2008)
Hulianytskyi, L.F., Mulesa, O.Y.: Applied Methods of Combinatorial Optimization: Tutorial. Publishing and Printing Center "Kyiv University", Kyiv, Ukraine (2016)
Hulianytskyi, L.F., Sirenko, S.I.: Definition and study of combinatorial spaces. Optimal Decision Theory 9, 17–25 (2010)
Hulyanitskii, L.F., Sergienko, I.V.: Metaheuristic downhill simplex method in combinatorial optimization. Cybernetics and Systems Analysis 44(3), 822–829 (May 2008). https://doi.org/10.1007/s10559-008-9011-2
Iemets, O.O., Roskladka, O.V.: Optimization problems on polycombinatorial sets: properties and solutions. RVV PUSKU, Poltava, Ukraine (2006), http://dspace.puet.edu.ua/handle/123456789/377
Kochenberger, G., Hao, J.K., Glover, F., Lewis, M., Lu, Z., Wang, H., Wang, Y.: The unconstrained binary quadratic programming problem: a survey. Journal of Combinatorial Optimization (1), 58–81 (2014). https://doi.org/10.1007/s10878-014-9734-0
Koliechkina, L., Pichugina, O.: A Horizontal Method of Localizing Values of a Linear Function in Permutation-Based Optimization. In: Le Thi, H.A., Le, H.M., Pham Dinh, T. (eds.) Optimization of Complex Systems: Theory, Models, Algorithms and Applications. pp. 355–364. Advances in Intelligent Systems and Computing, Springer International Publishing, Cham (2020). https://doi.org/10.1007/978-3-030-21803-4_36
Korsh, J.F., LaFollette, P.S.: Loopless Array Generation of Multiset Permutations. The Computer Journal 47(5), 612–621 (Jan 2004). https://doi.org/10.1093/comjnl/47.5.612
Korte, B., Vygen, J.: Combinatorial Optimization: Theory and Algorithms. Springer, Heidelberg ; New York, 5th edn. (Jan 2012), 10.1007/978-3-540-71844-4
Kreher, D.L., Stinson, D.R.: Combinatorial Algorithms: Generation, Enumeration, and Search. CRC Press, Boca Raton, Fla, 1st edn. (Dec 1998)
MacMahon, P.A.: Combinatory Analysis. Dover Publications, Mineola, N.Y, dover edn. (Jul 2004)
Martinetti, V.: Sulle configurazioni piane mu3. Annali di Matematica Pura ed Applicata (1867-1897) 15(1), 1–26 (Apr 1887). https://doi.org/10.1007/BF02420228
Onaka, S.: Superspheres: Intermediate Shapes between Spheres and Polyhedra. Symmetry 4(3), 336–343 (Jul 2012). https://doi.org/10.3390/sym4030336
Papadimitriou, C.H., Steiglitz, K.: Combinatorial Optimization: Algorithms and Complexity. Dover Publications, unabridged edn. (1998)
Pardalos, P.M., Du, D.Z., Graham, R.L.: Handbook of Combinatorial Optimization. Springer, 2nd ed. 2013 edn.
Pichugina, O., Yakovlev, S.: Continuous Approaches to the Unconstrained Binary Quadratic Problems. In: B´elair, J., Frigaard, I., Kunze, H., Makarov, R., Melnik, R., Spiteri, R.J. (eds.) Mathematical and Computational Approaches in Advancing Modern Science and Engineering, pp. 689–700. Springer International Publishing (2016). https://doi.org/10.1007/978-3-319-30379-6_62
Pichugina, O., Yakovlev, S.: Convex extensions and continuous functional representations in optimization, with their applications. Journal of Coupled Systems and Multiscale Dynamics 4(2), 129–152 (Jun 2016). https://doi.org/10.1166/jcsmd.2016.1103
Pichugina, O., Yakovlev, S.: Continuous Representation Techniques in Combinatorial Optimization. IOSR Journal of Mathematics 13(02), 12–25 (May 2017). https://doi.org/10.9790/5728-1302051225
Pichugina, O., Yakovlev, S.: Optimization on polyhedral-spherical sets: Theory and applications. In: 2017 IEEE 1st Ukraine Conference on Electrical and Computer Engineering, UKRCON 2017 - Proceedings. pp. 1167–1174. Kiev, Ukraine (May 2017). https://doi.org/10.1109/UKRCON.2017.8100436
Pichugina, O., Yakovlev, S.: Quadratic Optimization Models and Convex Extensions on Permutation Matrix Set. In: XIV International Scientific and Technical Conference Computer Science and Information Technologies. Lviv, Ukraine (Sep 2019)
Pichugina, O.S.: The Algorithm of Constructing Convex Extension for Polynomials over Polypermutations and its Applications. Problems of Computer Intellectualization pp. 125–132 (2012), http://www.foibg.com/ibs_isc/ibs-28/ibs-28-p14.pdf
Pichugina, O.S.: Surface and combinatorial cuttings in Euclidean combinatorial optimization problems. Mathematical and computer modelling, The Series: Physics and Mathematics 1(13), 144–160 (Mar 2016), http://mcm-math.kpnu.edu.ua/article/view/70278
Pichugina, O.S.: Functional-analytic representations of Euclidean combinatorial configuration sets in optimization. Radioelectronics & Informatics Journal (1), 30–39 (2018), http://dspace.nbuv.gov.ua/handle/123456789/132017
Pichugina, O.S.: Mathematical modeling of combinatorial configurations and application in optimization. Mathematical machines and systems (1), 123–137 (2018), http://dspace.nbuv.gov.ua/handle/123456789/132017
Pichugina, O.S., Yakovlev, S.V.: Continuous Representations and Functional Extensions in Combinatorial Optimization. Cybernetics and Systems Analysis 52(6), 921–930 (Nov 2016). https://doi.org/10.1007/s10559-016-9894-2
Pichugina, O.S., Yakovlev, S.V.: Convex extensions for the quadratic problems over permutation matrices. Computational Mathematics (1), 143–154 (2016)
Pichugina, O.S., Yakovlev, S.V.: Functional and analytic representations of the general permutation. EasternEuropean Journal of Enterprise Technologie 79(1(4)), 27–38 (2016). https://doi.org/10.15587/1729-4061.2016.58550
Pichugina, O.S., Yakovlev, S.V.: The penalty method for solving optimization problems over polyhedral-spherical combinatorial sets. Radioelectronics & Informatics Journal (1), 18–26 (2016)
Pichugina, O.S., Yakovlev, S.V.: Global optimization on permutohedron in combinatorial problems on vertex-set sets. Mathematical and computer modelling, The Series: Physics and Mathematics 1(15), 152–158 (2017), http://mcm-math.kpnu.edu.ua/article/view/111576
Pichugina, O.S., Yakovlev, S.V.: Continuous functional representations in discrete optimization: a monograph. Gold Mile, Kharkiv, Ukraine (2018)
Pichugina, O.: New Bounds in Linear Combinatorial Optimization. In: Proceedings of the 9th International Conference "Information Control Systems & Technologies". pp. 137–149. CEUR Vol-2711 urn:nbn:de:0074-2711-3, Odessa, Ukraine (Sep 2020)
Pichugina, O., Kartashov, O.: Signed Permutation Polytope Packing in VLSI Design. In: 2019 IEEE 15th International Conference on the Experience of Designing and Application of CAD Systems (CADSM). pp. 4/50–4/55 (Feb 2019). https://doi.org/10.1109/CADSM.2019.8779353
Pichugina, O., Koliechkina, L.: Linear constrained combinatorial optimization on welldescribed sets. IOP Conference Series: Materials Science and Engineering 1099(1), 012064.1–17 (Mar 2021). https://doi.org/10.1088/1757-899X/1099/1/012064
Pichugina, O., Muravyova, N.: A spherical cutting-plane method with applications in multimedia flow management. In: Proceedings of the 1st International Workshop on Digital Content & Smart Multimedia (DCSMart 2019). vol. 2533, pp. 82–93. CEUR (2019), https://ceur-ws.org/Vol-2533/paper8.pdf
Pichugina, O., Muravyova, N.: The Polyhedral-Surface Cutting-Plane Method for Linear Combinatorial Optimization. In: Proceedings of the 9th International Conference "Information Control Systems & Technologies". pp. 455–467. CEUR Vol-2711 urn:nbn:de:0074-2711-3, Odessa, Ukraine (Sep 2020)
Pichugina, O., Yakovlev, S.: Euclidean Combinatorial Configurations: Continuous Representations and Convex Extensions. In: Lytvynenko, V., Babichev, S., Wójcik, W., Vynokurova, O., Vyshemyrskaya, S., Radetskaya, S. (eds.) Lecture Notes in Computational Intelligence and Decision Making. pp. 65–80. Advances in Intelligent Systems and Computing, Springer, Cham, Zalizniy Port, Ukraine (Jul 2019). https://doi.org/10.1007/978-3-030-26474-1_5, 21-25 May
Pichugina, O., Yakovlev, S.: Euclidean Combinatorial Configurations: Typology and Applications. In: 2019 IEEE 2nd Ukraine Conference on Electrical and Computer Engineering (UKRCON). pp. 1065–1070 (Jul 2019). https://doi.org/10.1109/UKRCON.2019.8879912
Pichugina, O., Yakovlev, S.: Quadratic Optimization Models and Convex Extensions on Permutation Matrix Set. In: Shakhovska, N., Medykovskyy, M.O. (eds.) Advances in Intelligent Systems and Computing IV. pp. 231–246. Advances in Intelligent Systems and Computing, Springer International Publishing (Nov 2019). https://doi.org/10.1007/978-3-030-33695-0_17, 11-13 September 2019
Pichugina, O.: Polyhedral-spherical configurations: pecularities and applications. Mathematical and computer modelling, The Series: Physics and Mathematics (17), 90–107 (2018), http://mcm-math.kpnu.edu.ua/article/view/140087
Pisanski, T., Servatius, B.: Configurations from a Graphical Viewpoint. Birkh¨auser Advanced Texts Basler Lehrb¨ucher, Birkh¨auser Basel, 1st edn. (2013), http://gen.lib.rus.ec/book/index.php?md5=7a51663351a4844553de6b68c1e77f95
Postnikov, A.: Permutohedra, Associahedra, and Beyond. IMRN: International Mathematics Research Notices 2009(6), 1026–1106 (Mar 2009). https://doi.org/10.1093/imrn/rnn153
Pulleyblank, W.R.: Edmonds, matching and the birth of polyhedral combinatorics. Documenta Mathematica pp. 181–197 (2012)
Rispoli, F.J.: The Graph of the Hypersimplex. arXiv:0811.2981 [math] (Nov 2008), http://arxiv.org/abs/0811.2981, arXiv: 0811.2981
Ryser, H.J.: Combinatorial Configurations. SIAM Journal on Applied Mathematics 17(3), 593–602 (1969). https://doi.org/10.2307/2099147
Schrijver, A.: Combinatorial Optimization: Polyhedra and Efficiency. Springer Science & Business Media (Dec 2002), google-Books-ID: mqGeSQ6dJycC
Schroter, H.: Ueber lineare Constructionen zur Herstellung der Configurationen $n_3$. Gottinger Nachrich pp. 237–253 (1888)
Semenova, N.V., Kolechkina, L.M.: Vector problems of discrete optimization on combinatorial sets: methods of research and solution. Naukova Dumka, Kyiv, Ukraine (2009)
Stoyan, Y.G., Grebennik, I.: Description of classes of combinatorial configurations based on mappings. Dopovidi Natsionalnoi Akademii Nauk
Sergienko, I.V., Hulianytskyi, L.F., Sirenko, S.I.: Classification of applied methods of combinatorial optimization. Cybernetics and Systems Analysis 45(5), 732 (Sep 2009). https://doi.org/10.1007/s10559-009-9134-0
Sergienko, I.V., Shylo, V.P.: Problems of discrete optimization: Challenges and main approaches to solve them. Cybernetics and Systems Analysis 42(4), 465–482 (Jul 2006). https://doi.org/10.1007/s10559-006-0086-3
Sergienko, I.V.: Methods of optimization and systems analysis for problems of transcomputational complexity., Springer optimization and its applications, vol. 72. New York, NY : Springer (2012)
Stoyan, Y.G.: Some properties of special combinatorial sets (1980)
Stoyan, Y.G.: On a mapping of combinatorial sets into the Euclidean space (1992)
Stoyan, Y.G., Yakovlev, S.V.: Mathematical models and optimization methods in Geometric Design. Naukova Dumka, Kiev (1986)
Stoyan, Y.G., Yakovlev, S.V.: Mathematical models and optimization methods in Geometric Design (complemented ed.). Naukova Dumka, Kiev, Ukraine, 2nd edn. (2020)
Stoyan, Y.G., Yakovlev, S.V.: Theory and Methods of Euclidian Combinatorial Optimization: Current Status and Prospects. Cybernetics and Systems Analysis 56(3), 366–379 (May 2020). https://doi.org/10.1007/s10559-020-00253-6
Stoyan, Y.G., Yemets’, O.: Theory and methods of Euclidean combinatorial optimization. ISSE, Kiev, Ukraine (1993)
Stoyan, Y.G., Grebennik, I.: Compositional images of combinatorial sets andsome of their properties. Mechnical Engineering Problems 8(3), 56–62 (2005), http://scholar.google.com/scholar?cluster=6247466018141153953&hl
Stoyan, Y.G., Grebennik, I.: Description of classes of combinatorial configurations based on mappings. Dopovidi Natsionalnoi Akademii Nauk Ukrainy. Matematika. Prirodoznavstvo. Tekhnichni Nauki (10), 28–31 (2008), http://dspace.nbuv.gov.ua/xmlui/handle/123456789/6089
Stoyan, Y.G., Grebennik, I.: Combinatorial types for enumerating combinatorial configurations with special properties. Dopovidi Natsionalnoi Akademii Nauk Ukrainy. Matematika. Prirodoznavstvo. Tekhnichni Nauki (7), 28–32 (2010), http://www.ams.org/mathscinet-getitem?mr=3112750
Stoyan, Y.G., Yakovlev, S.V.: Construction of convex and concave functions on the permutation polyhedron. Dokl. Acad. Sci. USSR A (5), 68–70 (1988), http://www.ams.org/mathscinet-getitem?mr=951554
Stoyan, Y.G., Yakovlev, S.V.: Properties of convex functions on the permutohedron. Doclady of Academy of Sciences of the Ukrainian SSR. Ser. A 88(3), 69–72 (1988)
Stoyan, Y.G., Yakovlev, S.V., Grebennik, I.V.: Extremal problems on the set of arrangements / national academy of sciences of ukraine, institute of mechnical engineering problems, no. 347)
Stoyan, Y.G., Yakovlev, S.V., Parshin, O.V.: Quadratic optimization on combinatorial sets in Rn. Cybernetics and Systems Analysis 27(4), 561–567 (Jul 1991). https://doi.org/10.1007/BF01130367
Stoyan, Y.G., Yakovlev, S.V., Pichugina, O.S.: The Euclidean combinatorial configurations: a monograph. Constanta, Kharkiv, Ukraine (2017)
Toth, C.D., O’Rourke, J., Goodman, J.E.: Handbook of Discrete and Computational Geometry. Chapman and Hall/CRC, 3rd edn.
Yakovlev, S., Pichugina, O., Yarovaya, O.: On Optimization Problems on the Polyhedral-Spherical Configurations with their Properties. In: 2018 IEEE First International Conference on System Analysis Intelligent Computing (SAIC). pp. 94–100. Kyiv, Ukraine (Oct 2018). https://doi.org/10.1109/SAIC.2018.8516801
Yakovlev, S.V.: Bounds on the minimum of convex functions on Euclidean combinatorial sets. Cybernetics 25(3), 385–391 (May 1989). https://doi.org/10.1007/BF01069996
Yakovlev, S.V.: The theory of convex continuations of functions on vertices of convex polyhedra. Computational Mathematics and Mathematical Physics 34(7), 1112–1119 (1994), http://www.ams.org/mathscinet-getitem?mr=1293961
Yakovlev, S.V.: The convex extension theory in combinatorial optimization problems. Dopovidi Natsionalnoi Akademii Nauk Ukrainy.
Matematika. Prirodoznavstvo. Tekhnichni Nauki (8), 20–26 (2017). https://doi.org/http://dx.doi.org/10.15407/dopovidi2016.02.031
Yakovlev, S.V.: On the combinatorial structure of problems of geometric design. Dopovidi Natsionalnoi Akademii Nauk Ukrainy. Matematika. Prirodoznavstvo. Tekhnichni Nauki (9), 26–32 (2017). https://doi.org/http://dx.doi.org/10.15407/dopovidi2016.02.031
Yakovlev, S.V., Gil, N., Komyak, V., Aristova, I.: Elements of the geometric design theory: Monograph. Naukova Dumka, Kiev, Ukraine (1995)
Yakovlev, S.V., Grebennik, I.V.: Some classes of optimization problems on a set of arrangements and their properties. Izvestiya Vysshikh Uchebnykh Zavedeniuı. Matematika (11), 74–86 (1991), http://www.ams.org/mathscinet-getitem?mr=1179093
Yakovlev, S.V., Grebennik, I.V.: Localization of solutions of some problems of nonlinear integer optimization. Cybernetics and Systems Analysis 29(5), 727–734 (Sep 1993). https://doi.org/10.1007/BF01125802
Yakovlev, S.V., Pichugina, O.S.: Properties of Combinatorial Optimization Problems Over Polyhedral-Spherical Sets. Cybernetics and Systems Analysis 54(1), 99–109 (Feb 2018). https://doi.org/10.1007/s10559-018-0011-6
Yakovlev, S.: Convex Extensions in Combinatorial Optimization and Their Applications. In: Optimization Methods and Applications, pp. 567–584. Springer Optimization and Its Applications, Springer, Cham (2017),https://link.springer.com/chapter/10.1007/978-3-319-68640-0_27,10.1007/978-3-319-68640-0_27
Yakovlev, S.V., Pichugina, O.S., Yarovaya, O.V.: Polyhedral-Spherical Configurations in Discrete Optimization Problems. Journal of Automation and Information Sciences 51(1), 26–40 (2019). https://doi.org/10.1615/JAutomatInfScien.v51.i1.30
Yakovlev, S., Kartashov, O., Pichugina, O.: Optimization on Combinatorial Configurations Using Genetic Algorithms. In: Proceedings of the Second International Workshop on Computer Modeling and Intelligent Systems (CMIS-2019). pp. 28–40. CEUR Vol-2353 urn:nbn:de:0074-2353-0, Zaporizhzhia, Ukraine (Apr 2019), http://ceur-ws.org/Vol-2353/paper3.pdf
Yakovlev, S., Kartashov, O., Pichugina, O., Korobchynskyi, K.: Genetic Algorithms for Solving Combinatorial Mass Balancing Problem. In: 2019 IEEE 2nd Ukraine Conference on Electrical and Computer Engineering (UKRCON). pp. 1061–1064 (Jul 2019). https://doi.org/10.1109/UKRCON.2019.8879938
Yakovlev, S., Kartashov, O., Yarovaya, O.: On Class of Genetic Algorithms in Optimization Problems on Combinatorial Configurations. In: 2018 IEEE 13th International Scientific and Technical Conference on Computer Sciences and Information Technologies (CSIT). vol. 1, pp. 374–377 (Sep 2018). https://doi.org/10.1109/STC-CSIT.2018.8526746
Yakovlev, S., Pichugina, O.: On Constrained Optimization of Polynomials on Permutation Set. In: CMIS (2019)
Yakovlev, S.: On a combinatorial structure of the problems of optimal packing of geometric objects. Dopovidi Natsionalnoi Akademii Nauk Ukrainy. Matematika. Prirodoznavstvo. Tekhnichni Nauki (9), 26–32 (2017). https://doi.org/10.15407/dopovidi2017.09.026
Yakovlev, S.: The theory of convex extensions in combinatorial optimization problems (8), 20–26 (2017). https://doi.org/10.15407/dopovidi2017.08.020
Yemelichev, V.A., Koval¨ev, M.M., Kravtsov, M.K.: Polytopes, graphs and optimisation. Cambridge University Press, Cambridge (1984), http://www.ams.org/mathscinet-getitem?mr=744197, translated from the Russian by G. H. Lawden 10.1112/blms/17.3.281
Yemets, O.O., Barbolina, T.M.: Combinatorial optimization on partial permutations. Naukova Dumka, Kyiv, Ukraine (2008), http://dspace.puet.edu.ua/handle/123456789/473
Yemets, O.O., Koliechkina, L., Nedobachii, S.I.: Study of search domains of Euclidean combinatorial optimization problems on permutation sets. ChPKP Legat, Poltava, Ukraine (1999), http://dspace.puet.edu.ua/handle/123456789/488
Yemets, O.O., Nedobachi˘ı, S.I.: The general permutohedron: an irreducible system of linear constraints and all facets’ equations. Naukovi visti NTUU - KPI (1), 100–106 (1998)
Zgurovsky, M.Z., Pavlov, A.: Hard combinatorial optimization problems in planning and decision making. Naukova Dumka, Kyiv, Ukraine (2016)
Ziegler, G.M.: Lectures on 0/1-Polytopes. In: Kalai, G., Ziegler, G.M. (eds.) Polytopes — Combinatorics and Computation, pp. 1–41. No. 29 in DMV Seminar, Birkh¨auser Basel (2000). https://doi.org/10.1007/978-3-0348-8438-9_1
Ziegler, G.M.: Lectures on Polytopes. Springer, 7th edn. (2011)
Utwór dostępny jest na licencji Creative Commons Uznanie autorstwa – Użycie niekomercyjne – Bez utworów zależnych 4.0 Międzynarodowe.
Opublikowane: 12 października 2023
Zgodnie z Komunikatem Prorektora UŁ ds. nauki dotyczącym systemu ScienceON od 15.09.2023 r. Wydawnictwo Uniwersytetu Łódzkiego wprowadza dane o wszystkich publikacjach wydanych przez siebie autorstwa pracowników UŁ.
Publikacja ww. danych jest możliwa po opublikowaniu pracy w wersji ostatecznej i w terminie do 30 dni od opublikowania.