-
990
-
922
-
887
-
785
-
763
Pliki do pobrania
The mortality modeling and forecasting is of fundamental importance in many areas, such as funding of public and private pensions, life insurance, the care of the elderly or the provision of health services. The book is an attempt to approach this subject from a new theoretical point of view, using theory of stochastic differential equations, theory of fuzzy numbers and complex numbers. These notes are addressed to tertiary students, doctoral students and specialists in the fields of demography, life insurance, statistics and economics.
Aalen O. O., (1978), Nonparametric Inference for a Family of Counting Processes, Annals of Statistics, 6, 701–726.
Akushevich I., Akushevich L., Manton K., Yashin A., (2003), Stochastic process model of mortality and aging: Application to longitudinal data, Nonlinear Phenomena in Complex Systems, 6, 515–523.
Alexiewicz A., (1969), Analiza funkcjonalna, PWN, Warszawa.
Alho J. M., Spencer B. D., (2005), Statistical Demography and Forecasting, Springer.
Antoch J., Hu–skova M., Janic A., Ledwina T., (2008), Data driven rank test for the change point problem, Metrika, Vol. 68 (1), 1–15.
Arnold B. C., (1983), Pareto Distributions, International Cooperative Publishing House, Fairland, Maryland.
Arnold B. C., Press S. J., (1989), Bayesian Estimation and Prediction for Pareto Data, Journal of the American Statistical Association, 84, 1079–1084.
Bain L. J., (1974), Analysis for the Linear Failure-Rate Life-Testing Distribution, Technometrics, 4, 551–559.
Balicki A., (2006), Analiza przeżycia i tablice wymieralności, PWE, Warszawa.
Bargiela A., Pedrycz W., Nakashima T., (2007), Multiple regression with fuzzy data, Fuzzy Sets and Systems, 158, 2169–2188.
Bayraktar E., Milevsky M. A., Promislow S. D., Young V. R., (2009),Valuation of mortality risk via the instantaneous Sharpe ratio: Applications to life annuities, Journal of Economics Dynamics and Control, 33, 676–691.
Benjamin B., Pollard J., (1993), The analysis of mortality and other actuarial statistics, The Institute of Actuaries, Oxford.
Bennett S., (1983), Log-Logistic Regression models for Survival Data, Applied Statistics, 32, 165–171.
Biffis E., (2005), Affine processes for dynamic mortality and actuarial valuations, Insurance: Mathematics and Economics, 37, 443–468.
Biffis E., Denuit M., (2006), Lee–Carter goes risk-neutral. An application to the Italian annuity market, Giornalle dell'Instituton Italiano degli Attuari, LXIX, 1–21.
Biffis E., Denuit M., Devolder P., (2010), Stochastic mortality under measure changes, Scandinavian Actuarial Journal, 4, 284–311.
Blom H.A.P., Lygeros J., (eds.) (2006), Stochastic Hybrid Systems. Theory and Safety Critical Applications, Springer, Berlin.
Booth H., (2006), Demographic forecasting: 1980 to 2005 in review, International Journal of Forecasting, 22, 547–581.
Boukas E. K., (2005), Stochastic Hybrid Systems: Analysis and Design, Birkhauser, Boston.
Bravo J. M., (2009), Modelling mortality using multiple stochastic latent factors, Proceedings of 7th International Workshop on Pension, Insurance and Saving, Paris, May 28–29, 1–15.
Bravo J. M., Braumann C. A., (2007), The value of a random life: modelling survival probabilities in a stochastic environment, Bulletin of the International Statistical Institute, LXII.
Brazauskas V., Serfling R., (2000), Robust and Efficient Estimation of the Tail Index of a Single Parameter Pareto Distribution, North American Actuarial Journal, 4, 12–27.
Brazauskas V., Serfling R., (2001), Small Sample Performance of Robust Estimators of Tail Parameters For Pareto and Exponential models, Journal of Statistical Computation and Simulation, 70, 1–19.
Brouhns N., Denuit M., Vermunt J. K., (2002), A Poisson log-bilinear regression approach to the construction of projected lifetables, Insurance: Mathematics and Economics, 31, 373–393.
Cairns A. J. G., Blake D., Dowd K., (2006), A Two-Factor for Stochastic Mortality with Parameter Uncertainty: Theory and Calibration, The Journal of Risk and Insurance, Vol. 73(4), 687–718.
Cairns A. J. G., Blake D., Dowd K., (2008), Modelling and management of mortality risk: a review, Scandinavian Actuarial Journal, 2–3, 79–113.
Cairns A. J. G., Blake D., Dowd K., Coughlan G. D., Epstein D., (2011), Mortality density forecasts: An analysis of six stochastic mortality models, Insurance: Mathematics and Economics, 48, 355–367.
Cairns A. J. G., Blake D., Dowd K., Coughlan G., Epstein D., Khallaf-Allah M., (2008), The plausibility of mortality density forecasts: an analysis of six stochastic mortality models, Pensions Institute, Discussion Paper PI-0801.
Cairns A. J. G., Blake D., Dowd K., Coughlan G. D., Epstein D., Ong A., Balevich I., (2009), A quantitative comparison of stochastic mortality models using data from England and Wales and the United States, North American Actuarial Journal, 13, 1–35.
Chen Z., (2000), A new two-parameter lifetime distribution with bathtub shape or increasing failure rate function, Statistics & Probability Letters, 49(2), 155–161.
Chiang C. L., (1968), Introduction to Stochastic Processes in Biostatistics, John Wiley, New York.
Coelho E., Magalhaes M. G., Bravo J. M., (2010), Mortality projections in Portugal, Proceeding of the Conference of European Statisticians, Working Session on Demographic Projections, Lisbon, Portugal, EUROSTAT (Series Forecasting demographic components: mortality, April 28–30, 1–11.
Cox D. R., (1972), Regression models and Life-Tables, Journal of the Royal Statistical Society, Ser. B, 34, 187–220.
Cox D. R., (1975), Partial Likelihood, Biometrika, 62, 269–276.
Cox J. C., Ingersoll J. E., Ross S. A., (1985a), A theory of the term structure of interest rates, Econometrica, 53, 385–407.
Cox J. C., Ingersoll J. E., Ross S. A., (1985b), An intertemporal general equilibrium model of asset prices, Econometrica, 53, 363–384.
Currie I. D., (2006), Smoothing and forecasting mortality rates with p-splines, Talk given at the Institute of Actuaries in 2006, available from http://www.ma.hw.ac.uk/ iain/research/talks.html
Dahl M., (2004), Stochastic mortality in life insurance: market reserves and mortality-linked insurance contracts, Insurance: Mathematics and Economics, 35, 113–136.
De Moivre A., Annuities upon Lives, Printed by W. P. and fold by Francis Fayram, London.
Debon A., Montes F., Puig F., (2008), Modelling and forecasting mortality in Spain, European Journal of Operational Research, 189, 624–637.
Denuit M., (2007), Life Annuities with Stochastic Survival Probabilities: A Review, Working Paper. Institut de Statistique & Institut des Sciences Actuarielles Universite Catholique de Louvain, Belgium.
Diamond P., (1988), Fuzzy least-squares, Information Sciences, 46(3), 141–157.
DiCiccio T., (1987), Approximate Inference for the Generalized Gamma Distribution, Technometrics, 29, 33–40.
Dubois D., Prade H., (1980), Fuzzy Sets and Systems: Theory and Applications, Academic Press, New York, London, Toronto, Sydney, San Francisco.
Evlanov L., Konstantinov V., (1976), System with Random Parameters, Nauka, Moskwa (In Russian).
Feigl P., Zelen M., (1965), Estimation of the Exponential Survival Probabilities with Concomitant Information, Biometrics, 21, 826–838.
Frątczak E., (1997), Analiza historii zdarzeń – elementy teorii, wybrane przykłady zastosowań z wykorzystaniem pakietu TDA, Szkoła Główna Handlowa, Warszawa.
Fung M. C., Peters G. W., Shevchenko P. V., (2015),A State-Space Estimation of the Lee–Carter Mortality Model and Implications for Annuity Pricing, Annals of Actuarial Science, vol. 11(2), 343–389.
Giacometti R., Ortobelli S., Bertocchi M., (2011), A stochastic model for mortality rate on Italian Data, Journal of Optimization Theory and Applications, 149, 216–228.
Girosi F., King G., (2006), Demographic Forecasting, Cambridge University Press, Cambridge.
Glasser M., (1967), Exponential Survival with Covariance, Journal of the American Statistical Association, 62, 501–568.
Gompertz B., (1825), On the nature of the function expressive of the law of human mortality and on a new mode of determining life contingencies, Philosophical Transactions of the Royal Society of London, Ser. A, CXV, 513–583.
Gupta R. C., Kannan N., Raychaudhuri A., (1997), Analysis of lognormal survival data, Mathematical Biosciences, 139(2), 103–115.
Graunt J. (1662), Natural and political observations mentioned in a following index, and made upon the bills of mortality, see London: John Martyn and James Allestry, 1973.
Haberman S., Renshaw A., (2008), Mortality, longevity and experiments with the Lee–Carter model, Lifetime Data Analysis, 14, 286–315.
Haberman S., Renshaw A., (2009), On age-period-cohort parametric mortality rate projections, Insurance: Mathematics and Economics, 45, 255–270.
Haberman S., Renshaw A., (2011), A comparative study of parametric mortality projection models, Insurance: Mathematics and Economics, 48, 3–55.
Hainaut D., (2012), Multi dimensions Lee–Carter model with switching mortality processes, Insurance: Mathematics and Economics, 47, 409–418.
Hainaut D., Devolder P., (2007), Management of a pension fund under mortality and –nancial risks, Insurance: Mathematics and economics, 41(1), 134–155.
Hainaut D., Devolder P., (2008), Mortality modelling with Levy processes, Insurance: Mathematics and Economics, 42, 409–418.
Halley E., (1693), An estimate of the degrees of the mortality of mankind, drawn from curious tables of the births and funerals at the city of Breslaw with an attempt to ascertain the price of annuities upon lives, Phil. Trans. Roy. Soc. London, 17, 596–610.
Hansen L. P. (1982), Large sample properties of Generalized Method of Moments Estimators, Econometrica, 50, 1029–1054.
Harper F. S., (1936), An actuarial study of infant mortality, Scandinavian Actuarial Journal, vol. 3–4, 234–270.
Harter H. L., (1967), Maximum Likelihood Estimation of the Parameters of a Four-Parameter Generalized Gamma Population from Complete and Censored Samples, Technometrics, 9, 159–165.
Hatzopoulos P., Haberman S., (2011), A dynamic parametrization modeling for the age-period-cohort mortality, Insurance: Mathematics and Economics, 49, 155–174.
Heligman L., Pollard J. H., (1980), The age pattern of mortality, Journal of the Institute of Actuaries, 107, 49–80.
Hespanha J.P., Tiwari A., (2006), Hybrid Systems: Computations and Control, Springer, Berlin.
Hjorth U., (1980), A Reliability Distribution with Increasing, Decreasing, Constant and Bathtub-Shaped Failure Rates, Technometrics, 22, 99–107.
Hong H. D., (2001), Shape preserving multiplications of fuzzy numbers, Fuzzy Sets and Systems, 123, 81–84.
Hong H. D., Song J. K., Do H. Y., (2001), Fuzzy least-squares regression analysis using shape preserving operations, Information Sciences, 138, 185–193.
Huffer F. W., McKeague I. W., (1991), Weighted Least Squares Estimation for Aalen's Additive Risk Model, Journal of the American Statistical Association, 86, 114–129.
Ibrahim R., (1985), Parametric Random Vibration, Research Studies Press, Letchworth, United Kingdom.
Itkis Y., (1983), Dynamic switching of type I/ type II structures in tracking servosystems, IEEE Transactions on Automatic Control, 28, 531–534.
Janic-Wróblewska A., Ledwina T., (2000), Data driven rank test for two-sample problem, Scandinavian Journal of Statistics, 27, 281–297.
Janssen J., Skiadas C. H., (1995), Dynamic modelling of life table data, Applied Stochastic models and Data Analysis, 11, 35–49.
Kannisto V., (1994), Development of oldest-old mortality, 1950-1990: evidence from 28 developed countries, Odense University Press, Odense, Denmark.
Kaplan E. L., Meier P., (1958), Nonparametric Estimation from Incomplete Observations, Journal of the American Statistical Association, 53, 457–481.
Kazakov I. E., Artemiev B. M., (1980), Optimization of Dynamic Systems with Random Structure, Nauka, Moscow (w j. rosyjskim).
Keilman N., (1990), Uncertainty in population forecasting: issues, backgrounds, analyses, recommendations, Swets & Zeitlinger, Amsterdam.
Keilman N. (ed.), (2005), Perspectives on Mortality Forecasting. Probabilistic models, Försäkringskassan, Swedish Social Insurance Agency.
Kędelski M., Paradysz J., (2006), Demografia, Wyd. AE, Poznań.
Kodlin D., (1967), A New Response Time Distribution, Biometrics, 2, 227–239.
Koissi M. C., Shapiro A. F., (2006), Fuzzy formulation of the Lee–Carter model for mortality forecasting, Insurance: Mathematics and Economics, 39, 287–309.
Kołodziej W., (1970), Wybrane rozdziały analizy matematycznej, Biblioteka Matematyczna, t. 36, PWN, Warszawa.
Kosiński W., Prokopowicz P., (2004), Algebra liczb rozmytych, Matematyka Stosowana, 46, 37–63.
Kosiński W., Prokopowicz P., .l–ezak D., (2003), Ordered fuzzy numbers, Bulletin of the Polish Academy of Sciences – Mathematics, 51, 327–338.
Krane S. A., (1963), Analysis of Survival Data by Regression Techniques, Technometrics, 5, 161–174.
Ladde G. S., Wu L., (2009), Development of modi–ed Geometric Brownian Motion model by using stock price data and basic statistics, Nonlinear Analysis, 71, 1203–1208.
Lambert J. H., (1776), Dottrina degli azzardi, Gaeta and Fontana, Milan.
Lee R. D., Carter L., (1992), Modeling and forecasting the time series of U.S. mortality, Journal of the American Statistical Association, 87, 659–671.
Lee R. D., Miller T., (2001), Evaluating the performance of the Lee–Carter method for forecasting mortality, Demography, 38, 537–549.
Liberzon D., (2003), Switchings in Systems and Control, Birkhauser, Boston, Basel, Berlin.
Lin D. Y., (1991), Goodness-of-Fit Analysis for the Cox Regression Model Based on a Class of Parameter Estimators, Journal of the American Statistical Association, 86, 725–728.
Lin H., Antsaklis P. J., (2009), Stability and stabilizability of switched linear systems: a survey of recent results, IEEE Transactions on Automatic Control, 54, 308–322.
Lipcer R., Sziriajew A., (1981), Statystyka procesów stochastycznych, PWN, Warszawa.
Loparo K. A., Aslanis J. T., Hajek O., (1987), Analysis of switching linear systems in the plane, part 1: local behavior of trajectories and local cycle geometry, Journal of Optimization Theory and Applications, 52, 365–394.
Luciano E., Spreeuw J., Vigna E., (2008), Modelling stochastic mortality for dependents lives, Insurance: Mathematics and Economics, 43, 234–244.
Luciano E., Vigna E., (2008), Mortality risk via a–ne stochastic intensities: calibration and empirical relevance, Belgian Actuarial Biulletin, vol. 8(1), 5–16.
Makeham W. M., (1867), On the Law of Mortality and the Construction of Annuity Tables, J. Inst. Actuaries and Assur. Mag., 8, 301–310.
Malik H. J., (1970), Estimation of the Parameters of the Pareto Distribution, Metrika, 15, 126–132.
Mao X., Yuan C., (2006), Stochastic Di–erential Equations with Markovian Switching, Imperial College Press. London.
Milevsky M. A., Promislow S. D., (2001), Mortality derivatives and the option annuities, Insurance: Mathematics and Economics, 29, 299–318.
Mlak W., (1970), Wstęp do teorii przestrzeni Hilberta, PWN, Warszawa.
Nelson W., (1969), Hazard Plotting for Incomplete Failure Data, Journal of Quality Technology, 1, 27–52.
Nielsen B., Nielsen J. P., (2010), Identification and Forecasting in the Lee–Carter Model, Economics Series Working Papers No 2010-W07, University of Oxford, Department of Economics, available on-line: www.nu–eld.ox.ac.uk
Okólski M. (ed.), (1990), Determinanty umieralności w świetle teorii i badań empirycznych, Wyd. SGPiS, Warszawa.
Okólski M., (2003), Kryzys zdrowotny w Polsce, Polityka Społeczna, nr 1.
Oksendal B., (2003), Stochastic Differential Equations: An Introduction with applications, 6th ed., Springer Verlag, Heidelberg–New York.
Opperman L., (1870), Insurance record 1870, 42–43, 46–47.
Ostasiewicz S., (2011), Aproksymacja czasu trwania życia w populacjach niejednorodnych, Zeszyty Naukowe WSOWL, 4 (162), 342–358.
Papanicolau G., Kohler W.,(1974), Asymptotic theory of mixing stochastic ordinary differential equation, Commun. Pure Applied Math., 27, 641–668.
Perks W. (1932), On some experiments in the graduation of mortality statistics, Journal of the Institute of Actuaries, 63, 12–40.
Pettitt A. N., (1984), Proportional Odds Model for Survival Data and Estimates Using Ranks, Applied Statistics, 33, 169–175.
Pitacco E., (2004), Survival models in a dynamic context: a survey, Insurance: Mathematics and Economics, 35, 279–298.
Plat R., (2009), On stochastic mortality modeling, Insurance: Mathematics and Economics, 45, 393–404.
Polovko A. M., (1968), Fundamentals of Reliability Theory, Academic Press, New York.
Prentice R. L., (1974), A Log-Gamma Model and Its Maximum Likelihood Estimation, Biometrika, 61, 539–544.
Preston S. H., Heuveline P., Guillot M., (2001), Demography. Measuring and Modeling Population Processes, Blackwell Publishing Ltd., Malden–Oxford–Carlton.
Proschan F., (1963), Theoretical Explanation of Observed Decreasing Failure Rate, Technometrics, 5, 375–385.
Pugachev V., Sinitsyn I., (1987), Stochastic Differential Systems: Analysis and Filtering, John Willey and Sons, Chichester.
Quandt R. E., (1966), Old and New Methods of Estimation and the Pareto Distribution, Metrika, 10, 55–82.
Renshaw A., Haberman S., (2003a), Lee–Carter mortality forecasting with age-specific enhancement, Insurance: Mathematics and Economics, 33, 255–272.
Renshaw A., Haberman S., (2003b), Lee–Carter mortality forecasting: a parallel generalized linear modelling approach for England and Wales mortality projections, Applied Statistics, 52, 119–137.
Renshaw A., Haberman S., (2003c), On the forecasting of mortality reduction factors, Insurance: Mathematics and Economics, 32, 379–401.
Renshaw A., Haberman S., (2006), A cohort-based extension to the Lee–Carter model for mortality reduction factor, Insurance: Mathematics and Economics, 38, 556–570.
Renshaw A., Haberman S. (2008), On simulation-based approaches to risk measurement in mortality with specific reference to Poisson Lee–Carter modelling, Insurance: Mathematics and Economics, 42(2), 797–816.
Rossa A., Socha L. Szymański A., (2011), Analiza i modelowanie umieralności w ujęciu dynamicznym, Wyd. U., Łódź.
Rossa A., Socha L., (2013), Proposition of Hybrid Stochastic Lee–Carter Mortality Model, Advances in Methodology and Statistics, 10(1), 1–16.
Rosset E., (1979), Trwanie życia ludzkiego, PWN, Warszawa.
Russo V., Giacometti R., Ortobelli S., Rachev S., Fabozzi F. J., (2011), Calibrating affine stochastic mortality models using term assurance premiums, Insurance: Mathematics and Economics, 49, 53–60.
Sakai S., (1971), C*-algebras and W*-algebras, Springer Verlag, Berlin–Heidelberg –New York.
Schrager D., (2006), A–ne stochastic mortality, Insurance: Mathematics and Economics, 38, 81–97.
Shi P., Li F., (2015), A survey on Markovian jump systems: modeling and design, Int. J. Cont. Autom. Syst., 13, 1–16.
Sierpiński W., (1968), Arytmetyka teoretyczna, PWN, Warszawa.
Sobczyk K., (1996), Stochastyczne równania różniczkowe, WNT, Warszawa.
Socha L., (1993), Równania momentów w stochastycznych układach dynamicznych, PWN, Warszawa.
Socha L., (2008), Linearization Methods for Stochastic Dynamic Systems, Springer, Berlin.
Stacy E. W., (1962), A Generalization of the Gamma Distribution, The Annals of Mathematical Statistics, 33, 1187–1192.
Stacy E. W., Mihram G. A., (1965), Parameter Estimation for a Generalized Gamma Distribution, Technometrics, 7, 349–358.
Steffensen, J. (1930), Om sandsynligheden for at afkommet uddor, Matematisk tidsskrift. B, 19–23.
Steward G. W. (1993), On the Early History of the Singular Value Decomposition, SIAM Review, 35(4), 551–566.
Stratonovich R., (1960), A new form of representation of stochastic integral and equations, SIAM Journal on Control and Optimization, 4, 362–371.
Szymański A., Rossa A. (2014), Fuzzy mortality model based on Banach algebra, International Journal of Intelligent Technologies and Applied Statistics, 7(3), 241–265.
Tabeau E., Berg Jehs A., Heathcote Ch. (eds.), (2001), Forecasting Mortality in Developed Countries. Insights from Statistical, Demographic and Epidemiological Perspective, Kluwer Academic Publishers, London.
Thatcher A. R., Kannisto V., Vaupel J. W., (1998), The force of mortality at ages 80 to 120, Monographs on Population Aging, vol. 5, Aging Research Center, Centre for Health and Social Policy, Odense University.
Teel A., Subbaraman A., Sferlazza A., (2014), Stability analysis for stochastic hybrid systems: A survey, Automatica, 50, 2435–2456.
Thiele T. N., Sprague T., (1871), On a mathematical formula to express the rate of mortality throughout the whole of life tested by a series of observations made use of by the danish life insurance company of 1871, Journal of the Institute of Actuaries, 16(5), 313–329.
Wang Ch.-W., Huang H.-Ch, Liu I-Ch., (2011), A Quantitative Comparison of the Lee–Carter Model under Different Types of Non-Gaussian Innovations, The Geneva Papers on Risk and Insurance - Issues and Practice, vol. 36(4), 675–696.
Weibull W., (1939), Statistical Theory of the Strength of Materials, Ingenioor Vetenskps Akademiens Handlingar, 151, 1–45.
Wilmoth J. R., (1993), Computational methods for fitting and extrapolating the Lee–Carter model of mortality change. Technical report, University of California, in: http://www.demog.berkeley.edu/jrw/Papers/LCtech.pdf
Wilmoth J. R., Horiuchi S., (1999), Rectangularization revised: variability of age at death within human populations, Demography, 36(4), 475–495.
Winkelbauer A., (2014), Moments and Absolute Moments of the Normal Distribution, Working Paper, Cornell University Library, available on-line: https://arxiv.org/abs/1209.4340
Wittstein J., Bumsted D. (1883), The mathematical law of mortality, Journal of the Institute of Actuaries and Assurance Magazine, 24(3), 153–173.
Wong E., (1971), Stochastic Processes in Information Theory and Dynamical Systems, McGraw–Hill, New York.
Wu S. J., (2003), Estimation for the Two-Parameter Pareto Distribution under Progressive Censoring with Uniform Removals, Journal of Statistical Computation and Simulation, 73, 125–134.
Wunsch G., Mouchart M., Duchene J. (eds.), 2002, The Life Table: Modelling Survival and Death, Springer-Science+Business Media B.V.
Van Berkum F., Antonio K., Vellekoop M., (2013), Structural changes in mortality rates with an application to Dutch and Belgian data, Workin Paper, KU Leuven.
Van der Maen W. J., (1943), Het berekenen van sterftekansen, Verz.-Arch., 24, 281–300.
Vasiček O., (1977), An equilibrium characterization of the term structure, Journal of Financial Economics, 5, 177–188.
Vaupel J. W., Zhang Z., van Raalte A. A., Life expectancy and disparity: an international comparison of life table data, in: BMJ Open 2011;1:e000128, doi:10.1136/bmjopen-2011-000128.
Yashin A. I., Arbeev K. G., Akushevich I., Kulminski A., Akushevich L., Ukraintseva S. V., (2207), Stochastic model for analysis of longitudinal data on aging and mortality, Mathematical Biosciences, vol. 208(2), 538–551.
Yin G., Zhang Q., Yang H., Yin K., (2002), A class of hybrid market models: simulation, identification and estimation, Proceedings of the American Control Conference, Anchorage, May 8–10, 2571–2576.
Yin G., Zhang Q., Yang H., Yin K., (2003), Constrained stochastic estimation algorithms for a class of hybrid stock market models, Journal of Optimization Theory and Applications, 118, 157–182.
Yin G. G., Zhu C., (2010), Hybrid Switching Di–usions: Properties and Applications, Springer Science + Bussiness Media, New York.
Zadeh L., (1965), Fuzzy Sets, Information and Control, 8, 338–353.
Zimmermann H.-J., (1996), Fuzzy Set Theory – and its Applications, fourth edition, Springer Science + Bussiness Media, New York.
Zippin C., Armitage P., (1966), Use of Concomitant Variables and Incomplete Survival Information in the Estimation of an Exponential Survival Parameter, Biometrics, 22, 665–672.
Żelazko W., (1968), Algebry Banacha, Biblioteka Matematyczna, t. 32, PWN, Warszawa.
Utwór dostępny jest na licencji Creative Commons Uznanie autorstwa – Użycie niekomercyjne – Bez utworów zależnych 4.0 Międzynarodowe.
Opublikowane: 11 kwietnia 2025
„Czasopisma naukowe wobec wyzwań cyfrowego świata: lokalność, cytowalność, umiędzynarodowienie”
Opublikowane: 11 kwietnia 2025
Czy Twoje dziecko potrafi radzić sobie z porażką, stresem lub trudnymi emocjami? Zastanawiasz się, jak skutecznie wspierać dzieci i młodzież w budowaniu odporności psychicznej w klasie i w domu?
Opublikowane: 6 marca 2025
Monografia „Łódź poprzez wieki. Historia miasta” redagowana przez naukowców z Uniwersytetu Łódzkiego zdobyła już rzeszę oddanych czytelników. Tymczasem w Wydawnictwie UŁ ukazała się kolejna książka o naszym mieście...
Mapa strony | Księgarnia | Social Media |
42 635 55 77 42 235 01 62 ksiegarnia@uni.lodz.pl Biuro: 42 235 01 65 42 635 55 80 agnieszka.janicka@uni.lodz.pl Polityka prywatności i cookies © 2024 Uniwersytet Łódzki |
![]() ![]() ![]() ![]() |