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SOME NOTES ON THE LÊ NUMBERS

IN THE FAMILY OF LINE SINGULARITIES

GRZEGORZ OLEKSIK AND ADAM RÓŻYCKI

Abstract. In this paper we introduce the jumps of the Lê numbers of non-

isolated singularity f in the family of line deformations. Moreover, we prove

the existence of a deformation of a non-degenerate singularity f such that
the first Lê number is constant and the zeroth Lê number jumps down to

zero. We also give estimations of the Lê numbers when the critical locus is

one-dimensional. These give a version of the celebrated theorem of A. G.
Kouchnirenko in this case.

1. Introduction

The most important topological invariant associated with a complex analytic
function f with an isolated singularity at 0, is its Milnor number at 0. It is well
known that this invariant is upper-semicontinuous in the family of singularities.
Therefore it allows to define the jump of the Milnor number as the minimum
non-zero difference µ(f) − µ((ft)), where (ft) is a deformation of f . S. Guzein-
Zade [6] and A. Bodin [1] began the research devoted to this notion. In the papers
[2,7,8,17] authors computed the jump of the Milnor number in the different classes
deformations.

If f has a non-isolated singularity at 0, the Milnor number can not be defined.
But there exist some numbers called Lê numbers, which play a similar role to the
Milnor number in the isolated case. These numbers were defined by D. Massey
(see [13–15]). Roughly speaking they describe a handle decomposition of the Mil-
nor fibre (see [15, Theorem 3.3]). We recall that families with constant Lê numbers
satisfy remarkable properties. For example, in [14], Massey proved that under ap-
propriate conditions the diffeomorphism type of the Milnor fibrations associated
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with the members of such family is constant. In [5], J. Fernández de Bobadilla
showed that in the special case of families of 1-dimensional singularities, the con-
stancy of Lê numbers implies the topological triviality of the family at least if
n ≥ 5.

Analogously as the Milnor number, the tuple of the Lê numbers has upper-
semicontinuity property in the lexicographical order. Therefore, it is possible to
distinguish two types of jumps. The first is the jump up of the tuple of the Lê
numbers and the second is the jump up of the Lê number λd

f,z(0), where d is
a dimension of the critical locus.

In general, the Lê numbers are not topological invariants. However, it turns out
that in the family of aligned singularities they are topological invariants (see [15,
Corollary 7.8]). In the paper we focus our attention on the class of line singularities
(see definition 5.1). It is the simplest class of aligned singularities. In the paper we
consider deformations mainly in this class. Our main theorem (Theorem 5.3) guar-
antees the existence of a deformation (ft) of a non-degenerate singularity f = f0
with λ0

f0,z
(0) > 0, such that λ0

(ft),z
(0) = 0 and λ1

(ft),z
(0) = λ1

f,z(0). In terms of

a handle decomposition of the Milnor fibre it means that handles of the highest
dimension disappear and others remains unchanged (see Remark 5.4).

Using Theorem 5.3 we introduce the minimal jump of the tuple of Lê numbers.
In this class we can interpret the jump of the tuple of Lê numbers as a measure of
“nearness” of the cycles (see Remark 5.8). Moreover, we show the interesting fact
that there exists f such that the minimal jump of λ1

f,z(0) is greater then one (see

Proposition 5.11). What is surprising, in the class of line singularities λ0
f,z(0) ̸= 1

(see Proposition 5.9). From this fact and Example 5.10 it follows that the “minimal
jump” of λ0

f,z(0) is greater then one.

In the last section we give estimations of Lê numbers in terms of the Newton
diagram when the critical locus is one-dimensional (see Theorem 6.1). This is
a generalization of the Kouchnirenko theorem in this case.

2. Preliminary

Lê numbers are intersection multiplicity of certain analytic cycles — so-called
Lê cycles — with certain affine subspaces. The Lê cycles are defined using the
notion of gap sheaf. In this section, we briefly recall these definitions which are
essential for the paper. We follow the presentation given by Massey in [13–15].

2.1. Gap sheaves. Let (X,OX) be a complex analytic space, W ⊆ X be an
analytic subset of X, and I be a coherent sheaf of ideals in OX . As usual, we
denote by V (I ) the analytic space defined by the vanishing of I . At each point
x ∈ V (I ), we want to consider scheme-theoretically those components of V (I )
which are not contained in W . For this purpose, we look at a minimal primary
decomposition of the stalk Ix of I in the local ring OX,x, and we consider the
ideal Ix¬W in OX,x consisting of the intersection of those (possibly embedded)
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primary components Q of Ix such that V (Q) ⊈ W . This definition does not
depend on the choice of the minimal primary decomposition of Ix. Now, if we
perform the operation described above at the point x simultaneously at all points
of V (I ), then we obtain a coherent sheaf of ideals called a gap sheaf denoted
by I¬W . Hereafter, we shall denote by V (I )¬W the scheme (i.e., the complex
analytic space) V (I¬W ) defined by the vanishing of the gap sheaf I¬W .

2.2. Lê cycles and Lê numbers. Let n ≥ 2. Consider an analytic function
f : (U, 0) → (C, 0), where U is an open neighbourhood of 0 in Cn, and fix a system
of linear coordinates z = (z1, . . . , zn) for Cn. Let Σf be the critical locus of f . For
0 ≤ k ≤ n− 1, the kth (relative) polar variety of f with respect to the coordinates
z is the scheme

Γk
f,z := V

(
∂f

∂zk+1
, . . . ,

∂f

∂zn

)
¬Σf.

The analytic cycle

[Λk
f,z] :=

[
Γk+1
f,z ∩ V

(
∂f

∂zk+1

)]
−
[
Γk
f,z

]
is called the kth Lê cycle of f with respect to the coordinates z. (We always use
brackets [·] to denote analytic cycles.) The kth Lê number λk

f,z(0) of f at 0 ∈ Cn

with respect to the coordinates z is defined to be the intersection number

(2.1) λk
f,z(0) :=

(
[Λk

f,z] · [V (z1, . . . , zk)]
)
0

provided that this intersection is 0-dimensional or empty at 0; otherwise, we say
that λk

f,z(0) is undefined.1 For k = 0, the relation (2.1) means

λ0
f,z(0) =

(
[Λ0

f,z] · U
)
0

=

[
Γ1
f,z ∩ V

(
∂f

∂z1

)]
0

.

For any dim0 Σf < k ≤ n−1, the Lê number λk
f,z(0) is always defined and equal

to zero. For this reason, we usually only consider the Lê numbers

λdim0 Σf
f,z (0), . . . , λ0

f,z(0),

and we denote this tuple by λf,z(0). Note that if 0 is an isolated singularity of f ,
then λ0

f,z(0) (which is the only possible non-zero Lê number) is equal to the Milnor

number µf (0) of f at 0.

Now, we introduce the cycle of the critical locus (see [15, Proposition 1.15]). Let
d = dim0 Σf . We define

(2.2) [Σf ] =

d∑
i=0

λi
f,z(0)|[Λi

f,z]|.

1As usual, [V (z1, . . . , zk)] denotes the analytic cycle associated to the analytic space defined by

z1 = · · · = zk = 0. The notation
(
[Λk

f,z ] · [V (z1, . . . , zk)]
)
0
stands for the intersection multiplicity

at 0 of the analytic cycles [Λk
f,z ] and [V (z1, . . . , zk)].
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3. Lê numbers of a deformation

Let f : (U, 0) → (C, 0) be an analytic function , where U is an open neighbour-
hood of 0 in Cn, and fix a system of linear coordinates z = (z1, . . . , zn) for Cn.

A deformation of f is an analytic function

F : (D × U,D × {0}) → (C, 0),

where D is an open neighbourhood of the origin in C, such that F (0, z) = f(z) for
any z ∈ Cn. We will shortly write ft(z) := F (t, z), (ft) := F .

Assume that d = dim0 Σf ≥ 1 and the Lê numbers λk
ft,z

(0) are defined for all
k ≤ d and all t sufficiently small.

Theorem 3.1. (Uniform Iomdine-Lê-Massey formula, [15, Theorem 4.15]) For
sufficiently large integer j and any sufficiently small complex number t, we have
the following properties:

(1) Σ(ft + zj1) = Σft ∩ V (z1) in a neighbourhood of the origin;

(2) dim0 Σ(f + zj1) = d− 1;

(3) the Lê numbers λk
ft+zj

1,z̃
(0) exist for all 0 ≤ k ≤ d− 1 and

λ0
ft+zj

1,z̃
(0) =λ0

ft,z(0) + (j − 1)λ1
ft,z(0);(3.1)

λk
ft+zj

1,z̃
(0) =(j − 1)λk+1

ft,z
(0) for 1 ≤ k ≤ d− 1;(3.2)

where λk
ft+zj

1,z̃
(0) is the kth Lê number of ft + zj1 at 0 with respect to the rotated

coordinates z̃ = (z2, . . . , zn, z1).

Now, we define the Lê numbers of a deformation F . For this reason we will
prove the following.

Proposition 3.2. The numbers λk
ft,z

(0), k ≤ d are independent of small t ̸= 0.

Proof. By Uniform Iomdine-Lê-Massey formula inductively we get that for
0 ≪ j1 ≪ · · · ≪ jd and small t,

ft,d := ft + zj11 + · · · + zjdd

has an isolated singularity at the origin. By upper-semicontinuity of Milnor number
we have the number µ(ft,d) is constant for small t ̸= 0. By (3.1) we obtain that
the number

(3.3) λ1
ft,d−1

(0) = µ(ft,d+1) − µ(ft,d)

is also constant for small t ̸= 0. Now, by (3.3) and (3.1) we get that

λ0
ft,d−1

(0) = µ(ft,d) − (jd − 1)λ1
ft,d−1

(0)

is also constant for small t ̸= 0. In similar way, by induction and using (3.1) and
(3.2) we finally get the assertion. □
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Definition 3.3. By the Lê numbers of a deformation (ft) we mean

λk
(ft),z

(0) := λk
ft,z(0), k ≤ d,

for sufficiently small t ̸= 0.

By Proposition 3.2 this definition is correct.

Like the Milnor number is upper-semicontinuous, the Lê numbers have also this
property treated as tuple (see [15]). Precisely, we have the following.

Theorem 3.4. (Upper-semicontinuity of Lê numbers, [15, Corollary 4.16]) The
tuple of Lê numbers (

λd
ft,z(0), . . . , λ0

ft,z(0)
)

is lexicographically upper-semicontinuous in the t variable, i.e. for all sufficiently
small t ̸= 0, either

λd
f,z(0) > λd

ft,z(0)

or

λd
f,z(0) = λd

ft,z(0) and λd−1
f,z (0) > λd−1

ft,z
(0)

or

...

or

λd
f,z(0) = λd

ft,z(0), . . . , λ1
f,z(0) = λ1

ft,z(0) and λ0
f,z(0) ≥ λ0

ft,z(0).

In other words λ(ft),z(0) ≺ λf,z(0), where ≺ is the lexicographical order.

4. Jump of Lê numbers

Let F = (ft) be a deformation of f such that dim0 Σft = dim0 Σf for sufficiently
small t. By the above semicontinuity, we can consider the jump of Lê numbers of
a deformation F in the lexicographical order.

Definition 4.1. By the jump δF,z(0) of a deformation F we mean

λf,z(0) − λF,z(0).

By the Theorem 3.4 and the fact that we can always deform f to be smooth, we
have

0 ≺ δF,z(0) ≺ λf,z(0).

Example 4.2. Let f(x, y, z) = y2 + z3. Then Σf = {y = z = 0}. It easy to check
that λf,z(0) = (2, 0). Taking the following sequence of deformations fk

t = f+txkz2,
we obtain λfk

t ,z(0) = (1, 3k − 1). This shows that δfk
t ,z(0) = (1, 1 − 3k) can be

arbitrary small.
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5. Main theorem

Let n ≥ 2 and f : (U, 0) → (C, 0) be an analytic function , where U is an open
neighbourhood of 0 in Cn.

Definition 5.1. We say that f is a line singularity if Σf is Oz1 i.e.
Σf = {z ∈ Cn : z2 = · · · = zn = 0} and f |V (z1) has an isolated singularity at
the origin.

Let f be a line singularity and let F = (ft) be its deformation.

Definition 5.2. We say that (ft) is a family of line singularities (F is a line
deformation of f) if Σft is z1-axis and ft|V (z1) has an isolated singularity at the
origin for each t near 0 ∈ C .

Observe that in the Example 4.2, λ0
f,z(0) = 0. In the case λ0

f,z(0) > 0, we give
the proof of the following theorem in the class of non-degenerate line singularities
(see Appendix A). We believe that it is also true for all line singularities.

Theorem 5.3. Let f : (U, 0) → (C, 0) be a non-degenerate line singularity, where
U is an open neighbourhood of 0 in Cn. Assume that z = (z1, . . . , zn) be prepolar
coordinates for f i.e. f |z1=0 has an isolated singularity at 0. If λ0

f,z(0) > 0, then

there exists a line deformation (ft) such that λ0
(ft),z

(0) = 0 and λ1
(ft),z

(0) = λ1
f,z(0).

Proof. Take
ft(z1, . . . , zn) = f(z1 + t, z2, . . . , zn).

Since z = (z1, . . . , zn) are prepolar coordinates for f , then f |z1=0 has an isolated
singularity at 0. Since (ft)|z1=0 is a deformation of f |z1=0, then (ft)|z1=0 has an
isolated singularity at 0. Therefore by [15, Remark 1.9] (z1, . . . , zn) are prepolar
coordinates for (ft) and λ0

(ft),z
(0), λ1

(ft),z
(0) exist. Since f and (ft) are the line

singularities, by [10,11,15] we have

λ1
f,z(0) = µ(f |z1=ε) = µ(f |z1=ε+t) = µ((ft)|z1=ε) = λ1

(ft),z
(0).

We will show λ0
(ft),z

(0) = 0. Since f is non-degenerate (ft) is also non-degenerate.

Moreover
Γ((ft)) = Γ((ft)|z1=0).

To prove it we identify the monomials of (ft) with associated points of supp(ft).
The monomials, which are vertices of Γ((ft)) do not depend on variable z1. In-

deed, suppose to the contrary that a monomial zα1
1 zβ2

2 . . . zβn
n is a vertex of Γ((ft)).

Hence by the form of (ft) monomial zβ2

2 . . . zβn
n is a point of supp(ft). Take the

hyperplane supporting Γ+((ft)) in zα1
1 zβ2

2 . . . zβn
n . Then every point of supp ft lies

on this hyperplane or above. But the point zβ2

2 . . . zβn
n lies below it. This gives the

contradiction. Therefore by [4] we have

λ0
(ft),z

(0) = λ0
(ft)|z1=0,z

(0) = 0.

The last equality follows from the definition of Lê numbers and the fact that
((ft)|z1=0)′z1 ≡ 0. This gives the assertion. □
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Remark 5.4. Roughly speaking, the deformation in the main theorem “straight-
ens” the line singularity along its critical locus.

Example 5.5. Let f(x, y, z) = y2 + z3 +x2z2. Then Σf = {y = z = 0}. It is easy
to check that λf,z(0) = (1, 5). Take the line deformation ft = f + tz2. We have
λ(ft),z(0) = (1, 0). Hence δ(ft),z(0) = (0, 5).

Let f be a line, non-degenerate singularity such that λ0
f,z(0) > 0. By Theorem

5.3 we can correctly define the minimal jump of f as follows.

Definition 5.6. By the minimal jump δf,z(0) of a singularity f we mean

min{δF,z(0) : F is a deformation of f, δF,z(0) ≻ 0},

where the above minimum is taken in the lexicographical order.

Definition 5.7. By the minimal jump in the class of line deformation δlf,z(0) of
a singularity f we mean

min{δF,z(0) : F is a line deformation of f, δF,z(0) ≻ 0}.

Remark 5.8. By (2.2), whenf and (ft) are line singularities we have

[Σf ] = λ1
f,z(0)[Oz1] + λ0

f,z(0)[0],

[Σft] = λ1
(ft),z

(0)[Oz1] + λ0
(ft),z

(0)[0].

In this case one can interpret δ(ft),z(0) as a “nearness” of the above cycles.

Proposition 5.9. Let f be a line singularity. Then

λ0
f,z(0) ̸= 1.

Proof. Suppose to the contrary that λ0
f,z(0) = 1. It means by definition that

(5.1)

(
[Γ1

f,z] ·
[
V

(
∂f

∂z1

)])
0

= 1.

Let [Γ1
f,z] =

∑k
i=1 ai[Υ

i], where Υi are irreducible components of Γ1
f,z. By (5.1)

we have
k∑

i=1

ai

(
[Υi] ·

[
V

(
∂f

∂z1

)])
0

= 1.

Therefore k = 1, Γ1
f,z is irreducible. Let φ : (C, 0) → (Cn, 0) be a parametrization

of Υ1. Hence

ord

(
∂f

∂z1
◦ φ

)
= 1.

This implies that ord f ′
z1 = 1. Hence, for some i we have

f(z1, . . . , zn) = az1zi + . . .

a ̸= 0. Then f ′
zi(t, 0, . . . , 0) ̸= 0. This and the assumption Σf is z1-axis gives the

contradiction. □
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Example 5.10. Let f(x, y, z) = y2 + z3 +xz2. Then Σf = {y = z = 0}. It is easy
to check that λf,z(0) = (1, 2). Take deformations ft = f + tz2. Then Σft = Σf
and λ(ft),z(0) = (1, 0). By Proposition 5.9 δlf,z(0) = (0, 2).

Proposition 5.11. There exists a singularity f : (C3, 0) → (C, 0) such that

min{λ1
f,z(0) − λ1

F,z(0) > 0: F is a line deformation of f} > 1.

Proof. Take
f(x, y, z) = y4 + z4 + y2z2.

We check that f is a line singularity and for sufficiently small ε ̸= 0 [15, Remark
1.19]

λ1
f,z(0) = µ0(f |x=ε) = 9.

Let F = (ft) be a line deformation of f . By [15, Remark 1.19] and [2, Theorem
3.1] we have

λ1
(ft),z

(0) = µ0((ft)|x=ε) ≤ 7.

This ends the proof. □

6. Estimation of Lê numbers

Let f : (U, 0) → (C, 0) be a singularity, where U is an open neighbourhood
of 0 in Cn. Suppose that z = (z1, . . . , zn) is prepolar coordinates for f and
dim0 Σf = 1.

Theorem 6.1.

λf,z(0) ≻ (ν̃1(f1), (−1)n + ν0(f1) + ν̃1(f1)),

λ1
f,z(0) ≥ ν̃1(f1),

where f1 = f + zα1 , α is sufficiently big and ν0(f1), ν̃1(f1) are modified Newton
numbers (see [4]). The equalities hold, if f is non-degenerate.

Proof. If f is non-degenerate, then the assertion follows from [4, Theorem 4.1].
Assume now that f is degenerate. Since the non-degeneracy is open condition
(see [16, Appendix]) there exists a non-degenerate deformation (ft) of f with
the same Newton diagram. Since the modified Newton numbers depend only
on the Newton diagram, modified Newton numbers of f and (ft) are the same.
Since z = (z1, . . . , zn) is prepolar coordinates for f it is also prepolar for (ft).
By [15, Theorem 1.28] the Lê numbers of (ft) exist. Hence by [4, Theorem 4.1]
we have

λ(ft),z(0) = (ν̃1(f1), (−1)n + ν0(f1) + ν̃1(f1)),

λ1
(ft),z

(0) = ν̃1(f1).

On the other hand, by the upper-semicontinuity of Lê numbers we get

λf,z(0) ≻ λ(ft),z(0),

λ1
f,z(0) ≥ λ1

(ft),z
(0).
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Summing up, we get the assertion. □

Appendix A. Newton diagram

Here, the reference is Kouchnirenko [9].

Let z := (z1, . . . , zn) be a system of coordinates for Cn, let U be an open
neighbourhood of the origin in Cn, and let

f : (U, 0) → (C, 0), z 7→ f(z) =
∑
α

cαz
α,

be an analytic function, where α := (α1, . . . , αn) ∈ Zn
+, cα ∈ C, and zα is a notation

for the monomial zα1
1 · · · zαn

n .

The Newton polyhedron Γ+(f) of f (at the origin and with respect to the coor-
dinates z = (z1, . . . , zn)) is the convex hull in Rn

+ of the set⋃
cα ̸=0

(α + Rn
+).

For any v ∈ Rn
+ \ {0}, put

ℓ(v,Γ+(f)) := min{⟨v, α⟩ ; α ∈ Γ+(f)},
∆(v,Γ+(f)) := {α ∈ Γ+(f) ; ⟨v, α⟩ = ℓ(v,Γ+(f))},

where ⟨· , ·⟩ denotes the standard inner product in Rn. A subset ∆ ⊆ Γ+(f) is
called a face of Γ+(f) if there exists v ∈ Rn

+ \ {0} such that ∆ = ∆(v,Γ+(f)).
The dimension of a face ∆ of Γ+(f) is the minimum of the dimensions of the affine
subspaces of Rn containing ∆. The Newton diagram (also called Newton boundary)
of f is the union of the compact faces of Γ+(f). It is denoted by Γ(f). We say
that f is convenient if the intersection of Γ(f) with each coordinate axis of Rn

+

is non-empty (i.e., for any 1 ≤ i ≤ n, the monomial zαi
i , αi ≥ 1, appears in the

expression
∑

α cαz
α with a non-zero coefficient).

For any face ∆ ⊆ Γ(f), define the face function f∆ by

f∆(z) :=
∑
α∈∆

cαz
α.

We say that f is Newton non-degenerate (in short, non-degenerate) on the face ∆
if the equations

∂f∆
∂z1

(z) = · · · =
∂f∆
∂zn

(z) = 0

have no common solution on (C\{0})n. We say that f is (Newton) non-degenerate
if it is non-degenerate on every face ∆ of Γ(f).
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[8] T. Krasiński, J. Walewska, Non-degenerate jumps of Milnor numbers of quasihomogeneous
singularities. Ann. Polon. Math. 123 (2019), no. 1, 369–386.
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