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REAL NULLSTELLENSATZ AND SUMS OF SQUARES

MARIA MICHALSKA

Abstract. In this paper we highlight the foundational principles of sums of
squares in the study of Real Algebraic Geometry. To this aim the article is
designed as mainly a self-contained presentation of a variation of the standard
proof of Real Nullstellensatz, the only relevant omission being the (long) proof
of the Tarski-Seidenberg theorem. On the way we see how the theory follows
closely developments in algebra and model theory due to Artin and Schreier.
This allows us to present on the way Artin’s solution to Hilbert’s 17th Problem:
whether positive polynomials are sums of squares. These notes are intended
to be accessible to math students of any level.

1. Introduction

Any sum of squares of real numbers is equal zero if and only if the numbers are
zero themselves; this is not true anymore over the algebraic closure of the real field.
These fundamental facts underlie a host of subtle differences of Algebraic Geometry
over the Real and the Complex numbers. The first and foremost difference is the
Nullstellensatz, a theorem which describes the relation between algebraic objects
and their vanishing sets. The complex Nullstellensatz asks the defining ideal of
a set to be radical, whereas the Real Nullstellensatz demands more: for the ideal
to be real, that is to have the property that if a sum of squares is an element of
this ideal, then all summands are elements of the ideal also.

This may come as surprise, but the Real Nullstellensatz was unknown until the
paper [Risler, 1970] of Jean-Jacques Risler in 1970. By all means, the sums of
squares were already a very prominent element in the study of Algebraic Geometry
over the reals. In 1900 among the famous problems of David Hilbert was the
following, the 17th Problem: is any nonnegative polynomial a sum of squares? This
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question lies naturally in Hilbert’s general predisposition to formalize mathematics,
since being a sum of squares is an algebraic certificate for nonnegativity. It was
already discovered by Hilbert that one cannot demand every positive polynomial to
be a sum of squares of polynomials. Nevertheless, one had to wait for Emil Artin to
present in 1927 a positive solution for rational functions, [Artin, 1927]. This comes
therefore as no surprise that elements of Artin-Schreier Theory are useful in the
proof of Real Nullstellensatz. Thus we will introduce some elements of the theory
and use the opportunity to present a full proof of Artin’s solution to Hilbert’s 17th
Problem.

Research on Null-, Nichtnull- and Positivstellensätze, and sums of squares
continues, nowadays motivated by pursuit of efficient optimization algorithms.
For a panorama of modern developments one can consult [Marshall, 2008],
[Scheiderer, 2009] or [Lasserre, 2015]. As a sidenote, one would like to remark
that by [Delzell, 1984] a nonnegative polynomial is even a sum of squares of regu-
lous functions, i.e. rational functions extending continuously to their indeterminacy
loci, which currently are quite intensively studied, compare [Fichou et al., 2016].
The aforementioned fact can be seen as basis of Nullstellensatz for regulous func-
tions which again demands the defining ideals to be simply radical, as it was all
the time in the complex case.

This note was designed foremost as a self-contained presentation of a variation
of the standard proof of Real Nullstellensatz, we will omit only the (long but
elementary) proof of the Tarski-Seidenberg theorem. These notes are intended
to be accessible to math students of any level. Notes are organized as follows:
presentation of the Real Nulsellensatz is given in Section 2 followed by explanation
of notation and notions, as well as essential properties and proofs of intermediate
results in Sections 3, 4 and 5. In Section 6 one finds the presentation and Artin’s
solution of Hilbert’s 17th Problem and the paper ends with presentation of proof of
Real Nullstellensatz over real closed fields in Section 7. On first lecture it is advised
for a novice reader to prove Propositions and Properties left without proof.

2. Real Nullstellensatz

Every real algebraic set in Rn is defined to be the vanishing set of an ideal
I ◁ R[X1, . . . , Xn], i.e. it is a set of the form

V (I) = {x ∈ Rn : ∀f∈If(x) = 0}.

Note that every polynomial ideal I is finitely generated by, say, f1, . . . , fk, hence
any real algebraic set can be given by one equation f21 + · · · + f2k = 0. We say an
ideal I is real if from

∑
a2j ∈ I follows all aj ∈ I, see Section 3.

On the other hand, for a set V ⊂ Rn denote the defining ideal

I(V ) = {f ∈ R[X] : ∀x∈V f(x) = 0}

i.e. I(V ) is the largest ideal in R[X1, . . . , Xn] such that all its elements vanish on
V . Obviously, always I ⊂ I(V (I)).



REAL NULLSTELLENSATZ... 123

Real Nulstellensatz ties the geometric meaning of ideals with the algebraic mean-
ing of sets in the real euclidean space in the following way:

Theorem 1 (Real Nullstellensatz). Let I ◁ R[X1, . . . , Xn].

I = I(V (I)) ⇐⇒ I is real

Proof of Real Nullstellensatz is given in the last Section. Reader is advised to
start with the proof and go back to relevant sections when needed.

3. Basic algebra

Throughout this section let R be a commutative ring (with unity) and I ◁ R an
ideal.

Definition 3.1. I is real if

a21 + · · ·+ a2k ∈ I ⇒ a1, . . . , ak ∈ I

for any a1, . . . , ak ∈ R.

Property 3.2. (1) If an ideal is prime, then it is radical.
(2) If an ideal is real, then it is radical.

Property 3.3. I is prime iff the quotient ring R/I is an integral domain i.e. has
no zero divisors.

Property 3.4. (1) Field R embeds naturally into R[X1, . . . , Xn]/I if I ̸=
R[X1, . . . , Xn].

(2) Integral domain R embeds naturally into its field of fractions Quot(R).

Definition 3.5. I is primary if

ab ∈ I ⇒ a ∈ I or bm ∈ I for some m ∈ N.

Definition 3.6. We say that the commutative ring is noetherian if every ascending
chain of ideals stabilizes.

The above is equivalent to saying that every ideal is finitely generated. Note
that every field is noetherian, because it contains only two ideals (0) and (1).

Theorem 3.7 (Hilbert’s basis theorem). If R is a noetherian ring, then the ring
of polynomials R[X1, . . . , Xn] is also noetherian.

Theorem 3.8 (Noether-Lasker Theorem). Assume ring is noetherian. Every ideal
is an intersection of finitely many primary ideals.

Proof. We divide the proof into two steps.
• Every ideal is a finite intersection of irreducible ideals.
We say that an ideal I is irreducible if for any two ideals J,K if I = J ∩K, then

I = J or I = K. The proof is standard for noetherian rings:
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Let A be the set of all ideals which are not a finite intersection of irreducible
ideals. Take I ∈ A. If I cannot be expressed as an intersection of two ideals
different from I, then I is irreducible. Therefore I /∈ A. Hence I = J1 ∩ K1.
Obviously, either J1 ∈ A or K1 ∈ A. Set I1 = J1 if J1 ∈ A or I1 = K1 otherwise.
Proceed inductively, given Ik ∈ A we have Ik = Jk ∩ Kk and Ik ̸= Jk, Ik ̸= Kk.
Put

Ik+1 =

{
Jk if Jk ∈ A
Kk otherwise

We get an ascending sequence
I ⊂ I1 ⊂ . . .

of ideals. Since R is noetherian, we get Ik = IN for all k ≥ N and some N ∈ N.
But then IN = IN+1 contrary to assumption. Therefore A = ∅. This ends the
proof.

• Every irreducible ideal is primary
Take an irreducible ideal I and take ab ∈ I. We will use quotients of ideals to

prove that a ∈ I or bm ∈ I.
Define Jk = I : (bk) = {c ∈ R : cbk ∈ I}. We have that Jk are ideals and

I = J0 ⊂ J1 ⊂ J2 ⊂ . . .

Since R is noetherian, the sequence stabilizes. Let JN be such that Jk = JN for
all k ≥ N .

Put J = JN and K = I + (bN ). Then obviously I ⊂ J ∩ K. Moreover, if
c ∈ J ∩K, then

c = i+ fbN , i ∈ I(1)

and
bNc ∈ I.

Multiplying both sides of (1) above by bN we get

cbN − i = fb2N .

Hence fb2N ∈ I. Therefore, f ∈ J2N = JN . Hence fbN ∈ I and from the form (1)
we see c ∈ I. Therefore, I = J ∩K.

Since I is irreducible, we get either I = K = I +(bm) and bm ∈ I or I = JN . In
the latter case we have I = JN ⊃ J1 ⊃ J0 = I, hence J1 = I. Since ab ∈ I, hence
a ∈ I : (b) = I. □

Corollary 3.9 (Prime decomposition of a radical). Assume ring is noetherian.
Every radical ideal is a finite intersection of minimal prime ideals.

Here a prime ideal p is minimal with respect to I if I ⊂ p and for any p′ prime:
I ⊂ p′ ⊂ p⇒ p′ = p.

Proof. Three easy steps.
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• The radical of primary ideal is prime

Let I be primary and
√
I = {a ∈ R : am ∈ I for some m} be its radical. Take

ab ∈
√
I. Then (ab)m ∈ I. Since I is primary, we get am ∈ I or bkm ∈ I. From

definition of radical, either a ∈
√
I or b ∈

√
I.

• Since I = p1 ∩ · · · ∩ pk with pi primary ideals due to Noether-Lasker Theorem
and I is radical, then

I =
√
I =

√
p1 ∩ · · · ∩ pk =

√
p1 ∩ · · · ∩ √

pk,

where every √
pi is prime.

• The prime ideals in decomposition can be taken as minimal.
We have I = p1 ∩ · · · ∩ pk with all pi prime. Fix pi =: p. Consider any chain

(Pα)α with respect to inclusion of prime ideals Pα such that p ⊃ Pα ⊃ I and
Pα ⊂ Pβ for α ≥ β. Then P := ∩αPα is a prime ideal. Indeed, let ab ∈ P . Then
ab ∈ Pα for every α. Assume a, b /∈ P , then a, b /∈ Pα for some α (α can be chosen
in common for a, b because of inclusions). But this is contrary to assumption that
Pα is prime. Hence every chain has a lower bound. Therefore by Kuratowski-Zorn
Lemma1 there exists a minimal element Pi. The prime ideal Pi is a minimal prime
containing I by its definition.

One has I = p1 ∩ · · · ∩ pi ∩ · · · ∩ pm = p1 ∩ · · · ∩ Pi ∩ · · · ∩ pm. Apply above
reasoning to every ideal pi in the representation. □

Proposition 3.10. Assume ring is noetherian. All minimal prime ideals contain-
ing a real ideal are real.

Proof. Let I be a real ideal. Since real ideal is radical, from Corollary 3.9 we can
write I = p1 ∩ · · · ∩ pr with pi minimal prime ideals containing I. Assume p1 is not
real. Then we can take a21 + · · ·+ a2k ∈ p1 such that a1 /∈ p1. Since pl are minimal,
we can choose bl ∈ pl \ p1 for l = 2, . . . , r. Put b = Πl=2,...,rbl. We have b /∈ p1 by
definition of b, because p1 is prime. Then

(a1b)
2 + · · ·+ (akb)

2 = (a21 + · · ·+ a2k)b
2 ∈ p1 ∩

⋂
l=2,...,r

pl = I

and since I is real, we have a1b ∈ I ⊂ p1. Since p1 is prime, we get a1 ∈ p1 or
b ∈ p1. This gives a contradiction. Hence a1, . . . , ak ∈ p1 and p1 is real. □

Knowing there exists prime decomposition of radical ideals, we can reformulate
Proposition 3.10 in a following way.

Corollary 3.11 (Real prime decomposition of real ideal). Assume ring is noether-
ian. Every real ideal is a finite intersection of minimal real prime ideals.

Now, the following paragraph is not necessary for proof of RN, but is basic and
of interest in view of Artin-Lang homomorphism theorem.

1Kuratowski-Zorn Lemma: If every chain in a partially ordered set is bounded from below,
then there exists a minimal element in the set.
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Proposition 3.12. Let R be a commutative ring. An R-algebra A is finitely gen-
erated iff it is isomorphic to a quotient ring R[X]/I for some polynomial ring over
R and an ideal I ◁ R[X].

Proof. Suppose A is finitely generated as an R-algebra, this means there exist
polynomials f1, . . . , fk ∈ R[X1, . . . , Xn] such that A = R[f1, . . . , fk]. Then put
Φ : R[X1, . . . , Xk] → A as Φ(f) = f(f1, . . . , fk). Without doubt Φ is a surjective
homomorphism. Take I := kerΦ. Then R[X1, . . . , Xk]/I is isomorphic to A.

Now suppose that R[X1, . . . , Xk]/I is isomorphic to A. Since the natural ho-
momorphism Φ : R[X1, . . . , Xk] ∋ f → f + I ∈ A is surjective and Φ(f) =
f(Φ(X1), . . . ,Φ(Xk)), we get A = Φ(R[X1, . . . , Xk]) = R[Φ(X1), . . . ,Φ(Xk)]. □

4. Elements of Artin-Schreier Theory

One property that separates complex and real numbers is zeros of sums of
squares.

Definition 4.1. A field R is real if

a21 + · · ·+ a2k = 0 ⇒ a1, . . . , ak = 0

(or satisfies any of the equivalent conditions of Theorem 4.7).

You can see that complex numbers cannot be a real field since i2 + 12 = 0. The
Artin-Schreier Theory deals with this in a model-theoretic way.

Another thing that sets apart real and complex numbers is the ordering.

Definition 4.2. Let R be a ring. We say that ≤ is a total (linear) ordering of R
if it is an ordering

(i) a ≤ a
(ii) (a ≤ b ∧ b ≤ c) ⇒ a ≤ c transitive
(iii) (a ≤ b ∧ b ≤ a) ⇒ a = b antisymmetric

which is total (linear)

(iv) a ≤ b ∨ b ≤ a

and consistent with addition and multiplication

(v) a ≤ b⇒ (∀c a+ c ≤ b+ c)
(vi) (0 ≤ a ∧ 0 ≤ b) ⇒ 0 ≤ ab

We write a < b when a ≤ b and a ̸= b.

Property 4.3. If ring R is ordered, then

(1) 0 ≤ a2, in particular 0 < 1
(2) 0 ≤ a⇒ −a ≤ 0

Moreover, if R is a field, then
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(3) 0 < a < b⇒ 0 < 1
b <

1
a

(4) 0 < ab ⇐⇒ 0 < a
b ∧ b ̸= 0

Corollary 4.4. If the ring R is ordered, then N ⊂ R.
If a field R is ordered, then Q ⊂ R. In particular, charR = 0.

Denote by R2 all squares of elements of R.
Let us denote by

∑
R2 all finite sums of squares of elements of R.

If ring R is ordered, then 0 ≤ a for all a ∈
∑
R2. Not all rings can be ordered:

note that for complex numbers −1 is a square, so ordering would imply all complex
numbers to be zero.

Let us introduce a set defining an ordering.

Definition 4.5. We say P ⊂ R is a proper cone, if

(a)
∑
R2 ⊂ P

(b) P +P ⊂ P , P ·P ⊂ P closed under addition and multiplication
(c) −1 /∈ P proper
(d) −P ∩ P = {0} antisymmetric

A proper cone P is said to be a positive cone if

(e) P ∪ −P = R total

Naturally, −P := {a ∈ R : −a ∈ P}. Note that if
∑
R2 is a positive cone, then

it is the unique positive cone of R.

Property 4.6. There is a one-to-one correspondence between total orderings of R
and positive cones of R. The correspondence is given by

a ≤ b ⇐⇒ b− a ∈ P.

First Artin-Schreier Theorem gives characterization of ordered fields as real
fields.

Theorem 4.7 (Artin-Schreier Theorem for real fields). Let R be a field. Following
conditions are equivalent

(1) R is real i.e. a21 + · · ·+ a2k = 0 ⇒ a1, . . . , ak = 0
(2) −1 is not a sum of squares in R
(3) R can be ordered
(4) R contains a positive cone

Proof. (1) ⇐⇒ (2) If −1 ∈
∑
R2, then −1 = a21 + · · ·+ a2k. Hence 0 = 12 + a21 +

· · ·+ a2k and R is not real. If
∑

j=1,...,k a
2
j = 0 and a1 ̸= 0, then

∑
j ̸=1

(
aj

a1

)2

= −1.

(3) ⇐⇒ (4) By Property 4.6.
(3) ⇒ (2) Assume R is ordered. If −1 =

∑
j=1,...,k a

2
j , then 0 ≤ −1. Hence

0 < 1 + (−1) = 0 which gives a contradiction.
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(2) ⇒ (3) We will show the following.
• For R real there exists a maximal proper cone in R. A maximal proper cone

is a positive cone.
The set

∑
R2 is a proper cone by assumption that −1 is not a sum of squares.

Consider any chain (Pα) of proper cones. Then P :=
⋃
(Pα) is a proper cone.

Indeed, it is obvious that P satisfies points (a)-(c) of the definition. To prove (d)
it suffices to note that Pα ∩ −Pβ = {0} for all α, β. Hence 0 ∈ P ∩ −P ⊂ {0}.
Therefore, every chain is bounded from above and by Kuratowski-Zorn Lemma
there exists a maximal proper cone P≤ in R.

Assume P≤ is not a positive cone. Then for c /∈ P≤ ∪ −P≤ we have that c is
not a sum of squares and Pc := P≤ + cP≤ is the smallest proper cone containing
P≤ ∪ {c}. Since P≤ is maximal, we get P≤ = Pc. Hence c ∈ P≤. Contradiction.

Therefore, every real field contains a positive cone, and equivalently it can be
ordered. □

Proposition 4.8. Let R be a ring and I ◁ R a prime ideal. Field of fractions
Quot(R/I) is real iff I is real.

Proof. Note that (a+I)/(b+I) = 0 in Quot(R/I) iff a ∈ I and b /∈ I. In particular∑
i=1,...,k

(
fi + I

gi + I

)2

= 0 ⇐⇒
∑

i=1,...,k

(
fig1 · · · gk

gi

)2

∈ I.

So if we assume I is real, then for
∑

i=1,...,k

(
fi+I
gi+I

)2

= 0 we get fig1···gk
gi

∈ I for
every i. Therefore fi/gi = 0 for every i. On the other hand, if Quot(R/I) is real
and we take f21 + · · · + f2k ∈ I, then (f1 + I)2 + · · · + (fk + I)2 = 0 and it follows
fi + I = 0 for all i. Therefore, fi ∈ I. □

Definition 4.9. A field R is algebraically closed if any univariate polynomial
over R has a root in R.

Theorem 4.10. For any field R if a field C is an algebraic extension of R and
every polynomial R[t] has a root in C, then C is algebraically closed.

This characterization of extensions is classic for field theory, for proof you can
look up [Isaacs, 1980].

Definition 4.11. A real field R is real closed if its algebraic extension R[
√
−1] =

R[X]/(X2 + 1) is proper and algebraically closed (or when R satisfies any of the
equivalent conditions of Theorem 4.13)

Note R(a) = R[a] for algebraic extension of field R.

Remark 4.12. The field R is a real closed field.
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Theorem 4.13 (Artin-Schreier Theorem for real closed fields). Let R be a field.
Following conditions are equivalent:

(1) R is real closed i.e. its algebraic extension R[
√
−1] is proper and alge-

braically closed.
(2) R is real and has no (proper) algebraic extension which is real
(3) the positive cone of R is the squares R2 and any odd-degree polynomial has

a root in R

Proof. In the proof we will use a following remark
• For a field R ̸= R[

√
−1] we have(

R = R2 ∪ −R2 ∧ R2 =
∑

R2
)

⇐⇒ R[
√
−1] =

(
R(

√
−1)

)2
Indeed, assume R = R2 ∪−R2 and R2 =

∑
R2. Take any a+

√
−1b with a, b ∈ R.

The discriminant of f = 4X2−4aX−b2 is (4a)2+(4b)2 ∈ R2, hence a root c of f lies
in R. Since R = R2 ∪−R2, we get c = α2 or c = (

√
−1α)2. Put x = α and y = b

2α

in first case, or x =
√
−1α and y = b√

−1α
otherwise. Then x +

√
−1y ∈ R[

√
−1]

and (x+
√
−1y)2 = a+

√
−1b.

Assume R[
√
−1] = (R[

√
−1])2. Take a ∈ R. There is b +

√
−1c, b, c ∈ R, such

that a = (b +
√
−1c)2 = b2 − c2 + 2

√
−1bc. Hence b = 0 or c = 0 and a = −c2

or a = b2 respectively. This proves R = R2 ∪ −R2. To prove R2 =
∑
R2 it

suffices to show a2 + b2 is a square for some a, b ∈ R. Take c, d ∈ R such that
a +

√
−1b = (c +

√
−1d)2. Then a = c2 − d2, b = 2cd and a2 + b2 = (c2 + d2)2.

This ends proof of the remark.
(1)⇒(2) Since R[

√
−1] is a proper algebraic closure of R, in particular we have√

−1 /∈ R and R[
√
−1] = (R[

√
−1])2. Hence R = R2 ∪ −R2, R2 =

∑
R2 and

R2 ∩ −R2 = {0}. Therefore R has a positive cone, hence is real.

Any proper algebraic extension of R contains an element a+
√
−1b ∈ R[

√
−1]\R.

Since b ̸= 0 we have R[a+
√
−1b] equals

R[X] / (x2 − 2ax+ a2 + b2),

thus a −
√
−1b ∈ R[a +

√
−1b]. Hence (a +

√
−1b − (a −

√
−1b))/2b =

√
−1 and

R[a+
√
−1b] = R[

√
−1]. Hence any proper algebraic extension of R is algebraically

closed. Algebraically closed field is never real.
(2)⇒(3) Suppose a ∈ R \ R2. Then R[

√
a] is an algebraic extension of R, by

assumption it is not real. Hence

−1 =
∑
j

(bj + cj
√
a)2 =

∑
b2j + a

∑
c2j +

√
a
∑

2bjcj .

Therefore
∑

2bjcj = 0 and a = −(12 +
∑
b2j )/

∑
c2j . Hence a ≤ 0. Thus every

positive element is a square.
Now we need to show every odd-degree polynomial has a root in R. Any polyno-

mial of degree 1 is linear and has a root in R. Assume all odd-degree polynomials
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of degree < d have a root in R. Let f ∈ R[X] be of odd degree d and suppose
f does not have a root in R. If f was reducible, then one of the factors would
be an odd-degree polynomial of degree lower than f , hence f would have a root
in R. Therefore f is irreducible over R. Then R[f ] = R[X]/(f) is an algebraic
extension of R. By assumption the field of fractions is not real. Therefore there
exist g1, . . . , gk of degrees < d such that

−1 =
∑

(gj + (f))
2
=

∑
g2j + (f).

Note that deg
(∑

g2j
)
≤ 2d−2 and is even (because the leading coefficient is a sum

of squares in the real field R, thus it does not vanish). Hence −1 =
∑
g2j + fh for

some h of odd degree ≤ d− 2. By inductive assumption, h has a root a in R. We
get −1 =

∑
g2j (a) + f(a)h(a) =

∑
(gj(a))

2, so −1 ∈
∑
R2. Contradiction.

(3)⇒(1) Under assumption (3) we have −1 /∈ R2, hence R[
√
−1] ̸= R.

We will show any polynomial over R of degree d = 2mn, n odd, has a root in
R[

√
−1] by induction on m. When m = 0 we get the claim from assumption (3).

Assume for any m′ < m the assumption holds. Consider polynomial f of degree
d = 2mn. Let a1, . . . , ad be roots of f in the algebraic closure of R. For N ∈ N put

gN (X) = Πi<j(X − ai − aj −Naiaj).

The polynomial gN is of degree d(d − 1)/2 = 2m−1(2mn − 1) and it is symmetric
in aj , the roots of f . From fundamental theorem of symmetric polynomials, see
for instance [Macdonald, 1979], we get that coefficients of gN can be expressed in
terms of coefficients of f , hence gN ∈ R[X]. From inductive assumption every gN
has a root in R[

√
−1]. Hence there exist i, j and N,N ′ ∈ N, c, c′ ∈ R[

√
−1] such

that ai + aj + Naiaj = c = c′ + (N − N ′)aiaj . Therefore aiaj and ai + aj are
elements of R[

√
−1].

We have (X − ai)(X − aj) = X2 − (ai + aj)X + aiaj is a quadratic polynomial
over R[

√
−1] with roots ai, aj and its discriminant is (ai+aj)2−4aiaj = (ai−aj)2.

Since R = R2 ∪ −R2, then R[
√
−1] = (R[

√
−1])2. Hence exists c ∈ R[

√
−1] such

that c2 = (ai−aj)2. Therefore from formulæ for solving quadratic equations we get
ai or aj ∈ R[

√
−1] and f has a root in R[

√
−1]. This ends the inductive proof. □

Definition 4.14. We say that a real field R is an extension of an ordered ring R
if R embeds into R with its ring operations and ordering.

Theorem 4.15. Every real field has a (unique) minimal extension to a real closed
field.

Proof. Note that algebraically closed field is not a real field, because −1 is a square.
Take a real field R with ordering ≤ and its algebraic closure C. Consider any

chain (Rα,≤α) of algebraic extensions of R (contained in C) with consistent or-
derings. The field

⋃
Rα is an algebraic extension of R (because it is contained in

the algebraic closure). Moreover, if a21 + · · ·+ a2k = 0 for a1, . . . , ak ∈
⋃
Rα, we get

a1, . . . , ak ∈ Rα for some α. Since Rα is real, then a1 = · · · = ak = 0 and
⋃
Rα is
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real. Hence by Kuratowski-Zorn Lemma there exists a maximal real field R ⊂ C
that is an algebraic extension of R with consistent ordering. The only algebraic
extension of R is C and C is not real. Hence R is a real closed field. Obviously, if
R ⊂ R′ ⊂ R and R′ is real closed, then R′ = R. □

Uniqueness in the theorem is up to an order-preserving isomorphism. For in-
stance, one can define infinitely many orderings in R(t) and some of them have
non-isomorphic extensions if we ask the isomorphism to respect the order.

5. Tarski’s Transfer Principle

Definition 5.1. We say that a formula is a boolean combination in variables
X1, . . . , Xn over an ordered ring R if it is a (syntax correct) finite combination
of formulas of the form f(X1, . . . , Xn) ≥ 0 with f ∈ R[X1, . . . , Xn] and the logic
operators ∨,∧ and ¬.

Note that a polynomial is a finite (syntax correct) combination of elements of
the field, variables X1, . . . , Xn, addition and multiplication.

Definition 5.2. A first order formula over an ordered ring is a (syntax correct)
finite combination of ∧,∨,¬, boolean combinations over the ordered field and quan-
tifiers ∀,∃. The variables which are not under range of any of the quantifiers are
called free variables (and the formula is in fact a sentential function in the free
variables).

The two definitions above are far from precise, for more exact formulation
see [Robinson, 1963, Chapter VIII].

For instance Φ(X,Y ) : X2 + 2Y 2 ≤ 0 ⇒ Y = 0 is a boolean combination with
free variables X,Y . Then Φ1(Y ) : ∃x Φ(x, Y ) is a first order formula with free
variable Y and Φ2 : ∀y Φ1(x, y) is also a first order formula without free variables,
Φ2 is a true statement. The formula ψ(X) : ∃y

∑∞
j=1X

j < y is not a first order
formula.

We treat a first order formula Φ over R as a formula over an extension R1 of R
by taking the range in the quantifiers as R1.

Remark 5.3. Formulas without free variables are either true or false.

We will now state and leave without proof the Tarski’s Quantifier Elimina-
tion Theorem known in real algebraic geometry as Tarski-Seidenberg Theorem,
see [Bochnak et al., 1998], [Tarski, 1951] or [Robinson, 1963] for different presen-
tations of its proof.
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Theorem 5.4 (Tarski-Seidenberg Theorem). Let R be an ordered ring. Let
b(X0, X1, . . . , Xn) be a boolean combination. There exists a boolean combination
B(X1, . . . , Xn) such that for any real closed field R1 extending R we have

{x ∈ Rn
1 : ∃x0∈R1

b(x0, x)} = {x ∈ Rn
1 : B(x)}

i.e. the projection of a semialgebraic set is semialgebraic.

This is equivalent to the following

Theorem 5.5 (Quantifier Elimination). Let R be an ordered ring. For every first
order formula Φ(X) over R there exists a boolean combination B(X) over R such
that for any real closed field R1 extending R we have

∀x∈R1

(
Φ(x) ⇐⇒ B(x)

)
.

It is important to note that quantifier elimination holds in the class of alge-
braically closed fields for constructible sets (see discussion of Lefschetz Principle
and Minor Lefschetz Principle in [Seidenberg, 1958] or [Eklof, 1973]).

Now we can prove Tarski’s transfer principle

Theorem 5.6 (Tarski’s Transfer Principle). Let R be an ordered ring. Let R1, R2

be real closed extensions of R and B(X1, . . . , Xn) a boolean combination over R.
Then

∃x∈Rn
1
B(x) ⇐⇒ ∃x∈Rn

2
B(x)

Tarski’s Transfer Principle can be equivalently stated as follows: theory of real
closed fields is model-complete.

Proof. Note that since R is ordered, it is an integral domain and by Proposition 4.8
and Theorem 4.15, there exist real closed extensions of R.

Take B(X1, . . . , Xn) a boolean combination over R. By Tarski-Seidenberg
Theorem and finite induction we can eliminate the quantifier in the formula
∃x1,...,xn

B(x1, . . . , xn) i.e. there exists a boolean combination B̃ such that for any
real closed extension R1 of R we have

∃x∈Rn
1
B(x) ⇐⇒ ∀y∈R1 ∃x∈Rn

1
B(x) ⇐⇒ ∀y∈R1 B̃ ⇐⇒ B̃.

The formula B̃ does not have free variables, therefore it is either true or false. Due
to Tarski’s Quantifier Elimination it has uniform logical value over all real closed
fields extending R, in particular over R1 and R2. □

6. Artin’s solution of Hilbert’s 17th Problem

Following theorems are not necessary for the proof of RN, but of interest partly
because Artin-Schreier Theory was developed to answer the following question:

Hilbert’s 17th Problem Is every positive polynomial a sum of squares of
rational functions?
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In fact, the problem dates back to Minkowsky. Moreover, Hilbert considered
mainly polynomials with rational coefficients. Hilbert already proved that there
exist polynomials positive on Rn such that they are not sums of squares of polyno-
mials. On the other hand, all nonnegative polynomials of degree d in n variables
are sums of squares of polynomials if and only if d ≤ 2 or n = 1 or d = 4 and n = 2
(see for instance [Bochnak et al., 1998, Section 6.3]).

Theorem 6.1 (Solution to Hilbert’s 17th Problem). Let R be a real closed field
and Q its subfield with the positive cone P = Q ∩ R2. Take f ∈ Q[X1, . . . , Xn]
which is nonnegative i.e.

∀x∈Rn f(x) ≥ 0.

Then

f ∈
∑

P · (Q(X))2

i.e. f(X) =
∑
ajq

2
j (X) with aj ∈ P and qj ∈ (Q(X))2.

Proof. Take f ∈ Q[X1, . . . , Xn] nonnegative and suppose f /∈
∑
P ·(Q(X))2. Hence

either −f ∈
∑
P · (Q(X))2 or not. In both cases, we can extend the proper cone∑

P · (Q(X))2 to a positive cone P ′ of Q(X1, . . . , Xn) such that −f ∈ P ′.
Write f =

∑
aαX

α with aα ∈ Q. Consider the first order variable-free formula
Φ with coefficients in Q of the form

Φ : ∃x1,...,xn

∑
aαX

α1
1 · · ·Xαn

n < 0.

Note that Φ is equivalent to

∃x1,...,xn
f(x1, . . . , xn) < 0

From the choice of ordering of Q(X), the statement Φ is true over the real closure
of Q(X). By Tarski’s Transfer Principle, Φ is also true over R. Therefore, there
exists x ∈ Rn such that f(x) < 0 which is against nonnegativity of f . □

In particular the above theorem is the desired solution to Hilbert’s problem:
every nonnegative real polynomial is a sum of squares of real rational functions
(R = Q = R). Moreover, every polynomial with rational coefficients is a sum of
squares of functions in Q(X) (R = R, Q = Q).

In the original solution of Hilbert’s problem by Artin an important tool was:

Theorem 6.2 (Artin-Lang Homomorphism Theorem). Let R ⊂ R1 be real closed
fields and A a finitely generated R-algebra. If there is a homomorphism ϕ1 : A →
R1, then there exists a homomorphism ϕ : A→ R.

Proof. We may assume A = R[X1, . . . , Xn]/I by Proposition 3.12. Take a ho-
momorphism ϕ1 : A → R1 and put y = (ϕ1(X1), . . . , ϕ1(Xn)) ∈ Rn

1 . Since



134 M. MICHALSKA

R[X1, . . . , Xn] is noetherian, consider finitely many generators f1, . . . , fk of I. For
any polynomial f =

∑
aαX

α1
1 · · ·Xαn

n we have

ϕ(f + I) = ϕ
(∑

aα(X1 + I)α1 · · · (Xn + I)αn

)
=

=
∑

aαϕ(X1 + I)α1 · · ·ϕ(Xn + I)αn = f(y).

Therefore f1(y) = · · · = fk(y) = 0. By Tarski’s Transfer Principle we get there
exists x ∈ R such that f1(x) = · · · = fk(x) = 0. Now we see the homomorphism
ϕ : A→ R given by assignment Xi → xi is well-defined. □

7. Proof of Real Nullstellensatz

In this section we prove Real Nullstellensatz. Careful reader may note that in
previous sections we worked with real fields and in particular R is real. Hence we
will prove the following more general statement to be true:

Let R be a real closed field and I ◁ R[X1, . . . , Xn]. We have

I = I(V (I)) ⇐⇒ I is real

7.1. Proof of RN in easy direction. Note that for any arbitrary set V ⊂ Rn,
the ideal I(V ) is real. Assume I = I(V ). Take a21 + · · · + a2k ∈ I. Hence a21(x) +
· · · + a2k(x) = 0 at every point x ∈ V . Therefore, a1 = · · · = ak ≡ 0 on V . Hence
a1, . . . , ak ∈ I(V ) = I and I is real. This holds in particular when I = I(V (I)).

7.2. Proof of RN for prime ideals. Take a prime real ideal I ⊊ R[X]. To prove
RN it suffices to show that I ⊃ I(V (I)).

Take f /∈ I and denote g1, . . . , gk the generators of I. Due to Proposition 4.8
and Theorem 4.15 we can take R1, the real closure of the real field Quot(R/I).
Naturally R embeds into R1, see Property 3.4, and one can check the natural
embedding preserves the order. Note that 0 in R1 is the image of I.

Consider elements y1 = X1 + I, . . . , yn = Xn + I of R1 and the boolean combi-
nation

B(Y1, . . . , Yn) : g1(Y ) = · · · = gk(Y ) = 0 ∧ f(Y ) ̸= 0

defined over R.
Since f is polynomial i.e. f =

∑
aαX

α a finite sum, we get

f(y) =
∑

aαy
α =

∑
aα(X1 + I)α1 · · · (Xn + I)αn =

(∑
aαX

α
)
+ I = f + I

Hence f(y) = f + I ̸= I = 0 since f /∈ I.
Analogously we show g1(y) = · · · = gk(y) = 0.
The fields R1 and R are both real closed fields over R. Therefore, from Tarski’s

Transfer Principle we get

∃y∈Rn
1
B(y) ⇒ ∃x∈Rn B(x).
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Since the left-hand is true, there exists x ∈ Rn such that g1(x) = · · · = gk(x) = 0
and f(x) ̸= 0. Hence f(x) ̸= 0 for x ∈ V (I). Therefore, f /∈ I(V (I)) and this ends
the proof.

7.3. Proof of RN for any ideals. We will show that if RN is true for prime
ideals, then it is true for any ideal.

Assume the left implication of RN holds for real prime ideals. Take any real
ideal I. Hence I is radical and from prime decomposition of Corollary 3.9 we have

(2) I =
⋂

i=1,...,r

pi

where pi are minimal prime ideals and from Proposition 3.11 follows that the ideals
pi are real.

Hence pl in equality (2) are real. Since we have RN is true for prime ideals and
defining ideal of union of sets is equal to intersection of defining ideals of the sets,
we get

I(V (I)) = I

V (
⋂

l=1...,r

pl)

 = I

 ⋃
l=1...,r

V (pl)

 =

=
⋂

l=1...,r

I(V (pl)) =
⋂

l=1...,r

pl = I.

This ends the proof. □
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