
Analytic and Algebraic Geometry 4
Łódź University Press 2022, 75–82

DOI: https://doi.org/10.18778/8331-092-3.07

ON THE NEARLY FREE SIMPLICIAL LINE ARRANGEMENTS
WITH UP TO 27 LINES

MAREK JANASZ

Streszczenie. In the present note we provide a complete classification of
nearly free (and not free simultaneously) simplicial arrangements of d ⩽ 27
lines.

1. Introduction

The theory of line arrangements is a classical subject of studies in many bran-
ches of contemporary mathematics. In the recent years, many authors wanted to
understand possible linkages between combinatorial and geometric properties of
line arrangements. Let us recall that the famous Terao’s conjecture predicts that
the so-called freeness of a given arrangement of lines A is determined by the inter-
section poset of A. It is very difficult to predict whether Terao’s conjecture is true,
and in order to approach this problem Dimca and Sticlaru in [6] defined a new class
curves which is called nearly free. This class is designed as a natural generalization
of free curves and it is important in the context of a potential counterexample
to Terao’s conjecture. It seems that the class of nearly free arrangements is more
accessible, and it is definitely much wider. In the present note, which can be consi-
dered as an appendix to works devoted to simplicial line arrangements in the real
projective plane, we want to understand which sporadic examples of simplicial line
arrangements in the real projective plane are nearly free and not free. Even if the
classification problem of simplicial line arrangements is open in its whole generality,
we will use a great result due to M. Cuntz which provides a complete classification
of simplicial arrangements up to 27 lines and, in this way, we provide a complete
classification result of nearly free sporadic simplicial arrangements up to 27 lines.
Our main result, surprising to us, can be formulated as follows.
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Main Theorem. A sporadic simplicial line arrangement A ⊂ P2R is nearly free if
and only if A = A(17, 6) according to Cuntz’s catalogue.

Remark 1.1. More precisely, A(17, 6) is a sporadic simplicial line arrangement
consisting of 17 lines and it has 16 double, 15 triple, 10 quadruple, and one sixtuple
intersection point.

It means that the class of free sporadic simplicial line arrangements is barely
different from the class of nearly free sporadic simplicial line arrangements provided
that we restrict our attention to d ⩽ 27 lines.

In order to prove Main Theorem, we will use combinatorial properties of the
singular points of sporadic simplicial line arrangements. This allows us to determine
all those sporadic arrangements for which the total Milnor number is determined
exclusively by a polynomial equation of degree 2 that depends only on the number
of lines and the minimal degree of the syzygies between partial derivatives of the
defining polynomial. In the last step, using cohomological methods, we are able to
determine those arrangements which are purely nearly free.

The structure of the paper goes as follows. In Section 2, we provide all necessary
definitions and tools related to simplicial and nearly free line arrangements. In Sec-
tion 3, we provide our proof of Main Theorem. All necessary symbolic computations
were performed with use of Singular [3].

2. Preliminaries

In the section, we recall all necessary notations and definitions. For more infor-
mation in this area please consult [4, 9].

Let K be any field and consider S := K[x, y, z] the graded polynomial ring
over K.

Definition 2.1. A finite collection of d lines L = {ℓ1, ..., ℓd} ⊂ P2K is called an
arrangement of lines in the projective plane over K.

For an arrangement L = {ℓ1, ..., ℓd} we denote by Sing(L) the set of all inter-
section points among the lines, i.e., points in the plane where at least two lines
from L meet, and for such an intersection point p ∈ Sing(L) we denote by multp
its multiplicity, i.e., the number of lines passing through the point p. Following
Hirzebruch’s convention, we denote by tr the number of all intersection points of
multiplicity r ⩾ 2.

We define the class of simplicial line arrangements in the real projective plane
via Melchior’s result [7].

Definition 2.2. Let L = {ℓ1, ..., ℓd} ⊂ P2R of d ⩾ 3 lines such that td = 0. Then L
is a simplicial line arrangement if and only if

t2 = 3 +
∑
r⩾4

(r − 3)tr.
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Classically, a simplicial line arrangement L ⊂ P2R is an arrangement for which
all connected components of the complement M(L) := P2R \L are open triangles.
It is worth recalling that simplicial line arrangements were studied, for may years,
by Grünbaum, and he discovered three infinite families of such arrangements and
around 90 additional examples which are nowadays called sporadic. The collec-
tion of the three infinite families and around 90 sporadic examples is called in the
literature as Grünbaum’s catalogue. One of the most important conjectures rela-
ted to simplicial line arrangements is motivated by a strong claim of Grünbaum
[8, p. 4].

Conjecture 2.3. Except only finitely many corrections, Grünbaum’s catalogue is
complete.

In other words, one expects that there are only three infinite families of sim-
plicial line arrangements. A stronger conjecture, proposed by Cuntz and Geis in
[2, Conjecture 1.6], predicts even more.

Conjecture 2.4. Let L be a sporadic simplicial line arrangement in P2R of d lines.
Then d ⩽ 37.

The main aim of the present note is to understand the homological properties of
Jacobian ideals given by simplicial line arrangements. In order to do so, let recall
some crucial definitions. For a reduced curve C ⊂ P2C of degree d given by f = 0
we denote by Jf = ⟨∂x f, ∂y f, ∂z f⟩ the Jacobian ideal and by m = ⟨x, y, z⟩ the
irrelevant ideal. Consider the graded S-module N(f) = If/Jf , where If is the
saturation of Jf with respect to m.

Definition 2.5. We say that a reduced plane curve C is free if N(f) = 0.

Definition 2.6. We say that a reduced plane curve C is nearly free if N(f) ̸= 0
and for every k one has dimN(f)k ⩽ 1.

Recall that for a curve C given by f ∈ S we define the Milnor algebra as
M(f) = S/Jf . The description of M(f) for nearly free curves comes from [6] as
follows.

Theorem 2.7 (Dimca-Sticlaru). If C is a nearly free curve of degree d given
by f ∈ S, then the minimal free resolution of the Milnor algebra M(f) has the
following form:

0→ S(−b− 2(d− 1))→ S(−d1 − (d− 1))⊕ S2(−d2−(d− 1))
→ S3(−d+ 1)→ S

for some integers d1, d2, b such that d1 + d2 = d and b = d2 − d + 2. In that case,
the pair (d1, d2) is called the set of exponents of C.

The nearly freeness can be also studied via the following result due to Dimca
[5, Theorem 1.3], and this result is a vital technical tool for our proposes.
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Theorem 2.8 (Dimca). Let L ⊂ P2C be an arrangement of d lines and let f = 0
be its defining equation. Denote by r the minimal degree among all the Jacobian
relations, i.e., the minimal degree r for the triple (a, b, c) ∈ S3r such that a ·∂x(f)+
b · ∂y(f) + c · ∂z(f) = 0. Assume that r ⩽ d/2, then L is nearly free if and only if

(1) r2 − r(d− 1) + (d− 1)2 = µ(L) + 1,
where µ(C) is the total Milnor number of L, i.e.,

µ(L) =
∑

p∈Sing(L)

(multp − 1)2.

Finally, let us also present a cohomological description of free arrangements, see
[6] for details.

Theorem 2.9. Let C ⊂ P2C be a reduced curve of degree d and let f = 0 be its
defining equation. Then C is free if and only if then the minimal free resolution of
the Milnor algebra M(f) has the following form:

0→ S(−d1 − (d− 1))⊕ S(−d2 − (d− 1))→ S3(−d+ 1)→ S
with d1 + d2 = d− 1. The pair (d1, d2) is called the set of exponents of C.

3. Proof of Main Result

Dowód. Here we want to present the main idea standing behind our proof. First
of all, the table below presents all known sporadic simplicial line arrangements in
the real projective plane having at most 27 lines. We have, according to Cuntz’s
catalogue, around 70 such arrangements. In the table below we provide additionally
the total Milnor number of a given arrangement A(x, y) (here x denotes the number
of lines in the given arrangement and y its type), the discriminant △r for (1)
computed with respect to r as variable, and we provide information about the
roots of (1) computed with respect to r.

Here is the outline of our strategy:

• Among all sporadic simplicial line arrangements we detect those for which√
△r is an integer.

• For those line arrangements with an integral value of
√
△r, we extract all

arrangements for which (1), computed with respect to r, has integral roots.
• Finally, after the above two-step process, we compute the minimal free
resolutions of Milnor algebras, minimal degrees of the Jacobian relations
and, based on that information, we detect those sporadic arrangements
which are nearly free and not free.

We start with the aforementioned table.

Tabela 1: The list of sporadic simplicial line arrangements up to 27 lines

A(n, k) (t2, t3, . . .) µ(L) △r roots
A(7, 1) (3, 6) 27 > 0 r1 = 2, r2 = 4
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Tabela 1 – continued from the previous page
A(n, k) (t2, t3, . . .) µ(L) △r roots
A(9, 1) (6, 4, 3) 49 > 0 real
A(10, 2) (6, 7, 3) 61 > 0 real
A(10, 3) (6, 7, 3) 61 > 0 real
A(11, 1) (7, 8, 4) 75 > 0 r1 = 4, r2 = 6
A(12, 2) (8, 10, 3, 1) 91 > 0 real
A(12, 3) (9, 7, 6) 91 > 0 real
A(13, 2) (12, 4, 9) 109 > 0 real
A(13, 3) (10, 10, 3, 2) 109 > 0 real
A(13, 4) (6, 18, 3) 105 < 0 complex
A(14, 2) (11, 12, 4, 2) 127 > 0 real
A(14, 3) (9, 16, 4, 1) 125 < 0 complex
A(14, 4) (10, 14, 4, 0, 1) 127 > 0 real
A(15, 1) (15, 10, 0, 6) 151 > 0 real
A(15, 2) (13, 12, 6, 2) 147 > 0 r1 = 6, r2 = 8
A(15, 3) (12, 13, 9) 145 < 0 complex
A(15, 4) (12, 14, 6, 0, 1) 147 > 0 r1 = 6, r2 = 8
A(15, 5) (9, 22, 0, 3) 145 < 0 complex
A(16, 2) (14, 15, 6, 1, 1) 169 > 0 real
A(16, 3) (15, 13, 6, 3) 169 > 0 real
A(16, 4) (15, 15, 0, 6) 171 > 0 real
A(16, 5) (14, 16, 3, 4) 169 > 0 real
A(16, 6) (15, 12, 9, 0, 1) 169 > 0 real
A(16, 7) (12, 19, 6, 0, 1) 167 < 0 complex
A(17, 2) (16, 16, 7, 0, 2) 193 > 0 real
A(17, 3) (18, 12, 7, 4) 193 > 0 real
A(17, 4) (16, 16, 7, 0, 2) 193 > 0 real
A(17, 5) (16, 18, 1, 6) 193 > 0 real
A(17, 6) (16, 15, 10, 0, 1) 191 0 r0 = 8
A(17, 7) (13, 22, 7, 0, 1) 189 < 0 complex
A(17, 8) (14, 20, 7, 2) 189 < 0 complex
A(18, 2) (18, 18, 6, 3, 1) 217 > 0 real
A(18, 3) (19, 16, 6, 5) 217 > 0 real
A(18, 4) (18, 19, 3, 6) 217 > 0 real
A(18, 5) (18, 19, 3, 6) 217 > 0 real
A(18, 6) (18, 16, 12, 0, 1) 215 < 0 complex
A(18, 7) (18, 18, 6, 3, 1) 217 > 0 real
A(18, 8) (16, 22, 6, 2, 1) 215 < 0 complex
A(19, 1) (21, 18, 6, 0, 4) 247 > 0 real
A(19, 2) (21, 18, 6, 6) 243 > 0 r1 = 8, r2 = 10
A(19, 3) (24, 12, 6, 6, 1) 247 > 0 real
A(19, 4) (20, 20, 6, 4, 1) 243 > 0 r1 = 8, r2 = 10
A(19, 5) (20, 20, 6, 4, 1) 243 > 0 r1 = 8, r2 = 10
A(19, 6) (20, 20, 6, 4, 1) 243 > 0 r1 = 8, r2 = 10
A(19, 7) (21, 15, 15, 0, 1) 241 < 0 complex
A(20, 2) (25, 15, 10, 6) 271 > 0 real
A(20, 3) (21, 24, 6, 4, 0, 1) 271 > 0 real
A(20, 4) (23, 20, 7, 5, 1) 271 > 0 real
A(20, 5) (20, 26, 4, 4, 0, 0, 1) 273 > 0 real
A(21, 2) (30, 10, 15, 6) 301 > 0 real
A(21, 3) (24, 24, 9, 0, 4) 301 > 0 real
A(21, 4) (22, 28, 6, 4, 0, 0, 1) 301 > 0 real
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Tabela 1 – continued from the previous page
A(n, k) (t2, t3, . . .) µ(L) △r roots
A(21, 5) (26, 20, 9, 4, 2) 301 > 0 real
A(21, 6) (25, 20, 15, 2, 1) 297 < 0 complex
A(21, 7) (24, 22, 15, 3) 295 < 0 complex
A(22, 2) (24, 30, 12, 3, 1) 325 < 0 complex
A(22, 3) (27, 28, 0, 12) 331 > 0 real
A(22, 4) (27, 25, 9, 3, 3) 331 > 0 real
A(22, 5) (12, 58, 0, 0, 3) 319 < 0 complex
A(23, 1) (27, 32, 10, 4, 2) 359 < 0 complex
A(23, 2) (16, 56, 2, 0, 1, 2) 355 < 0 complex
A(24, 2) (32, 32, 0, 12, 0, 0, 1) 401 > 0 real
A(24, 3) (31, 32, 9, 5, 3) 395 < 0 complex
A(24, 4) (20, 54, 4, 0, 0, 2, 1) 393 < 0 complex
A(25, 2) (36, 28, 15, 0, 6) 433 > 0 real
A(25, 3) (30, 40, 15, 6) 421 < 0 complex
A(25, 4) (36, 30, 9, 6, 4) 433 > 0 real
A(25, 5) (36, 32, 0, 8, 4, 0, 1) 441 > 0 real
A(25, 6) (36, 30, 9, 6, 4) 433 > 0 real
A(25, 7) (33, 34, 12, 2, 3, 0, 1) 433 > 0 real
A(25, 8) (24, 52, 6, 0, 0, 0, 3) 433 > 0 real
A(26, 2) (35, 40, 10, 11) 461 < 0 complex
A(26, 3) (37, 36, 9, 6, 3, 1) 469 > 0 real
A(26, 4) (35, 39, 10, 4, 3, 0, 1) 469 > 0 real
A(27, 1) (40, 40, 6, 14, 1) 503 < 0 complex
A(27, 2) (39, 40, 10, 6, 2, 2) 507 > 0 r1 = 12, r2 = 14
A(27, 3) (39, 40, 10, 6, 2, 2) 507 > 0 r1 = 12, r2 = 14
A(27, 4) (38, 42, 9, 6, 3, 0, 1) 507 > 0 r1 = 12, r2 = 14

Based on what we have seen so far, we can check directly that the following
arrangements pass the first two steps of our selection, namely:

A(7, 1),A(11, 1),A(15, 2),A(15, 4),A(17, 6),A(19, 2),A(19, 4),A(19.5),A(19, 6),

A(27, 2),A(27, 3),A(27, 4).
Now, according to Step 3, we present a detailed discussion regarding nearly freeness
and freeness of the extracted arrangements.

A(7, 1) : The minimal free resolution of the Milnor algebra has the following form

0→ S2(−9)→ S3(−6)→ S,
which means that A(7, 1) is free.

A(11, 1) : The minimal free resolution of the Milnor algebra has the following form

0→ S2(−15)→ S3(−10)→ S,
so A(11, 1) is free.

A(15, 2) : The minimal free resolution of the Milnor algebra has the following form

0→ S2(−21)→ S3(−14)→ S,
so A(15, 2) is free.
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A(15, 4) : The minimal free resolution of the Milnor algebra has the following form

0→ S2(−21)→ S3(−14)→ S.

so A(15, 4) is free.
A(17, 6) : The minimal free resolution of the Milnor algebra has the following form

0→ S(−26)→ S2(−25)⊕ S(−24)→ S3(−16)→ S.

Since the minimal degree of the Jacobian relations r is equal to 8 and it
satisfies Equation (1), then A(17, 6) is nearly free.

A(19, 2) : The minimal free resolution of the Milnor algebra has the following form

0→ S2(−27)→ S3(−18)→ S,

so A(19, 2) is free.
A(19, 4) : The minimal free resolution of the Milnor algebra has the following form

0→ S2(−27)→ S3(−18)→ S,

so A(19, 4) is free.
A(19, 5) : The minimal free resolution of the Milnor algebra has the following form

0→ S2(−27)→ S3(−18)→ S,

so A(19, 5) is free.
A(19, 6) : The minimal free resolution of the Milnor algebra has the following form

0→ S2(−27)→ S3(−18)→ S,

so A(19, 6) is free.
A(27, 2) : The minimal free resolution of the Milnor algebra has the following form

0→ S(−51)→ S(−49)⊕ S(−41)⊕ S(−39)→ S3(−26)→ S,

so according to Theorem 2.7 arrangement A(27, 2) is not nearly free.
A(27, 3) : The minimal free resolution of the Milnor algebra has the following form

0→ S(−51)→ S(−49)⊕ S(−41)⊕ S(−39)→ S3(−26)→ S,

so according to Theorem 2.7 arrangement A(27, 3) is not nearly free.
A(27, 4) : The minimal free resolution of the Milnor algebra has the following form

0→ S2(−39)→ S3(−26)→ S,

so A(27, 4) is free.

This completes the proof. □
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