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ON LÊ’S FORMULA IN ARBITRARY CHARACTERISTIC

EVELIA ROSA GARCÍA BARROSO AND ARKADIUSZ PŁOSKI

Streszczenie. In this note we extend, to arbitrary characteristic, Lê’s formula
(Calculation of Milnor number of isolated singularity of complete intersection.
Funct. Anal. Appl. 8 (1974), 127–131).

1. Introduction

LetK be an algebraically closed field of characteristic p ­ 0. For any power series
f, g ∈ K[[x, y]] we put i0(f, g) := dimK K[[x, y]]/(f, g) and call it the intersection
multiplicity of f and g. We denote by [f, g] the Jacobian determinant of (f, g), that
is [f, g] = ∂f∂x

∂g
∂y −

∂f
∂y
∂g
∂x .

For any formal power series f ∈ K[[x, y]] we denote by ordf the order of f . Any
power series of order one is called a regular parameter.

Let f ∈ K[[x, y]] be a power series without constant term. The Milnor number
of f ∈ K[[x, y]] is µ(f) := i0

(
∂f
∂x ,

∂f
∂y

)
. Suppose that f is reduced, that is, it has no

multiple factors. We put Of = K[[x, y]]/(f), Of the integral closure of Of in the
total quotient ring of Of . Let C be the conductor of Of , that is the largest ideal
in Of which remains an ideal in Of . We define c(f) = dimK Of/C (the degree of
conductor) and r(f) the number of irreducible factors of f .

We define
µ(f) := c(f)− r(f) + 1.

If the characteristic of K is zero then µ(f) = µ(f). See [GB-Pł, Proposition 2.1]
for other properties of µ(f).
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The main result of this note is to extend Lê’s formula (see [L] and [G]) to
arbitrary characteristic:

Theorem A (Lê’s formula in arbitrary characteristic). Let l be a regular parame-
ter. Let f, g ∈ K[[x, y]]\{0} be coprime without constant term. Suppose that f is
reduced and let f = f1 · · · fr be the factorization of f into irreducible factors. If
i0(fi, l) ̸≡ 0 (mod p) for i = 1, . . . , r then

(1) i0(f, [f, g]) ­ µ(f) + i0(f, g)− 1.

The equality in (1) holds if and only if i0(fi, g) ̸≡ 0 (mod p) for i = 1, . . . , r.

Corollary to Theorem A. If f is irreducible and ordf ̸≡ 0 (mod p) then

(2) i0(f, [f, g]) ­ c(f) + i0(f, g)− 1.

The equality in (2) holds if and only if i0(f, g) ̸≡ 0 (mod p).

Remark 1.1. The assumption ordf ̸≡ 0 (mod p) in the above corollary is irrelevant
(see [H-R-S1, Corollary 2.4]).

2. Proof of Lê’s formula

Let t be a variable. A parametrization is a pair (x(t), y(t)) ∈ K[[t]]2\{(0, 0)}
such that x(0) = y(0) = 0. We say that the parametrization (x(t), y(t)) is good if
the field of fractions of the ring K[[x(t), y(t)]] is equal to the field K((t)). By the
Normalization Theorem (see for example [Pł, Theorem 2.1]), any irreducible power
series in K[[x, y]] admits a good parametrization.

The proof of Lê’s formula will be a consequence of two lemmas. Let f, g ∈
K[[x, y]]\{0} be without constant term.

Lemma 2.1 (Teissier’s lemma in arbitrary characteristic). Let l be a regular para-
meter and let f ∈ K[[x, y]] be a reduced power series with factorization f = f1 · · · fr
into irreducible factors. Suppose that i0(fi, l) ̸≡ 0 (mod p) for i = 1, . . . , r. Then

i0(f, [f, l]) = µ(f) + i0(f, l)− 1.

Proof. See [GB-Pł, Proposition 2.1(iii)]. □

The following lemma generalizes to arbitrary characteristic Delgado’s Formula
(see [D, Proposition 2.1.1] or [Ca, Proposition 2.4.1]).

Lemma 2.2 (Delgado’s formula). Let f, g ∈ K[[x, y]]\{0} be coprime and l be
a regular parameter. Suppose that f is reduced and f = f1 · · · fr is its factorization
into irreducible factors. If i0(fi, l) ̸≡ 0 (mod p) for i = 1, . . . , r then

(3) i0(f, [f, g]) ­ i0(f, g) + i0(f, [f, l])− i0(f, l)

with equality if and only if i0(fi, g) ̸≡ 0 (mod p) for any irreducible factor fi of f .
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Proof. We may assume, without loss of generality, that l(x, y) = x, hence [f, l] =
−∂f∂y and i0(f, l) = ordf(0, y). Let fi be an irreducible factor of f and let γ(t) =
(x(t), y(t)) be a good parametrization of the curve {fi(x, y) = 0}. We get

(4)
∂f

∂x
(γ(t))x′(t) +

∂f

∂y
(γ(t))y′(t) = 0.

Since f and g are coprime, fi is not a factor of g, that is g(x(t), y(t)) ̸= 0 and

(5)
∂g

∂x
(γ(t))x′(t) +

∂g

∂y
(γ(t))y′(t) =

d

dt
g(γ(t)).

Consider the system, in the unknowns U and V :

(6)

{
∂f
∂x (γ(t))U +

∂f
∂y (γ(t))V = 0

∂g
∂x (γ(t))U +

∂g
∂y (γ(t))V =

d
dtg(γ(t)).

By (4) and (5) the pair (x′(t), y′(t)) is a solution of the system (6). By Cramer’s
identities we get [f, g](γ(t))x′(t) = −∂f∂y (γ(t))

d
dtg(γ(t)) and taking orders we obtain

(7) ord[f, g](γ(t)) + ordx′(t) = ord
∂f

∂y
(γ(t)) + ord

d

dt
g(γ(t)).

Since i0(fi, x) ̸≡ 0 (mod p) we have ordx(t) ̸≡ 0 (mod p) and consequently
ordx′(t) = ordx(t) − 1. Analogously ord ddtg(γ(t)) ­ ordg(γ(t)) − 1, with equality
if and only if, ordg(γ(t)) = i0(fi, g) ̸≡ 0 (mod p). From (7) we get

(8) i0(fi, [f, g]) + i0(fi, x) ­ i0(fi, g) + i0
(
fi,
∂f

∂y

)
,

with equality if i0(fi, g) ̸≡ 0 (mod p). Summing up the inequalities (8), we obtain

i0(f, [f, g]) + i0(f, x) ­ i0(f, g) + i0
(
f,
∂f

∂y

)
with equality if i0(fi, g) ̸≡ 0 (mod p), for i = 1, . . . , r. □

Remark 2.3. A particular case of Delgado’s formula in arbitrary characteristic
appears in [H-R-S2, Lemma 3.5].

Proof of Theorem A It is a consequence of Lemmas 2.1 and 2.2. □

3. The case of characteristic zero

If the characteristic of K is zero then we have the following version of Lê’s formula.

Theorem B (Lê’s formula in zero characteristic). Let f, g ∈ K[[x, y]]\{0} be wi-
thout constant term. Then

(9) i0(f, [f, g]) = µ(f) + i0(f, g)− 1.
The left-hand side of (9) is infinite if and only if the right-hand side is so.

The following lemma is well-known (see for example [CN-Pł]):
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Lemma 3.1. Let f, g ∈ K[[x, y]]\{0} be without constant term.

(1) i0(f, g) = +∞ if and only if f and g are not coprime.
(2) µ(f) = +∞ if and only if f is not reduced.

The following general property also will be useful:

Property 3.2. Let h(x, y) ∈ K[[x, y]] be an irreducible power series. Let γ(t) =
(x(t), y(t)) be a good parametrization of h(x, y). Then ∂h∂x (γ(t)) ̸= 0 or

∂h
∂y (γ(t)) ̸= 0.

Proof. Suppose that ∂h∂x (γ(t)) = 0 and
∂h
∂y (γ(t)) = 0. This implies

∂h
∂x ≡ 0 (modh)

or ∂h∂y ≡ 0 (modh). Hence ord
∂h
∂x ­ ordh and ord

∂h
∂y ­ ordh. This is a contradiction

since if the characteristic of K is zero then ord∂h∂x = ordh−1 or ord
∂h
∂y = ordh−1.

□

Proof of Theorem B If µ(f) + i0(f, g) is finite then µ(f) is also. Hence, by the
second part of Lemma 3.1, f is reduced and µ(f) = µ(f). Therefore, in this case,
Theorem B follows from Theorem A.

The case where one of the two sides of (9) is infinite follows from the following
proposition, which is equivalent to [Sz, Theorem 3.6].

Proposition 3.3. Let f, g ∈ K[[x, y]]\{0} be without constant term. The following
two conditions are equivalent:

(1) µ(f) = +∞ or i0(f, g) = +∞.
(2) i0(f, [f, g]) = +∞.

Proof. Suppose that µ(f) = +∞ or i0(f, g) = +∞. In order to prove the equality
i0(f, [f, g]) = +∞, we distinguish two cases.
Case 1: µ(f) = +∞. There is an irreducible power series h ∈ K[[x, y]] such that
f ≡ 0 (modh2). Therefore ∂f∂x ≡ 0 (modh) and

∂f
∂y ≡ 0 (modh) which implies

[f, g] ≡ 0 (modh). Since f ≡ 0 (modh) we conclude i0(f, [f, g]) = +∞ by properties
of the intersection multiplicity.

Case 2: i0(f, g) = +∞. There exists an irreducible power series h ∈ K[[x, y]] such
that f ≡ 0 (modh) and g ≡ 0 (modh). Let f = a · h and g = b · h for some a, b ∈
K[[x, y]]. Observe that ∂f∂x

∂g
∂y ≡ ab

∂h
∂x
∂h
∂y ≡

∂f
∂y
∂g
∂x (modh), hence [f, g] ≡ 0 (modh).

Since h is an irreducible factor of f and [f, g] we conclude i0(f, [f, g]) = +∞.
Suppose now that i0(f, [f, g]) = +∞. There is an irreducible power series h ∈

K[[x, y]] such that f ≡ 0 (modh) and [f, g] ≡ 0 (modh). If f ≡ 0 (modh2) then,
by the second part of Lemma 3.1, µ(f) = +∞. Suppose that f = hf1 for some f1 ∈
K[[x, y]] with f1 ̸≡ 0 (modh). We have [f, g] = [hf1, g] = h[f1, g] + f1[h, g]. Since h
is an irreducible factor of [f, g], we get f1 [h, g] ≡ 0 (modh). Let γ(t) := (x(t), y(t))
be a good parametrization of h. By Property 3.2 we may assume, without loss of
generality, that ∂h∂y (γ(t)) ̸= 0.
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From the identity h(γ(t)) = 0 we get

(10)
∂h

∂x
(γ(t))x′(t) +

∂h

∂y
(γ(t))y′(t) = 0.

On the other hand, since h is an irreducible factor of [h, g], we get [h, g](γ(t)) = 0,
hence

(11)
∂h

∂x
(γ(t))

∂g

∂y
(γ(t)) +

∂h

∂y
(γ(t))

(
−∂g
∂x
(γ(t))

)
= 0.

From (10) and (11) we get that the pair
(
∂h
∂x (γ(t)),

∂h
∂y (γ(t))

)
is a nonzero solution

of the system, in the unknowns U and V :

(12)

{
x′(t)U + y′(t)V = 0
∂g
∂y (γ(t))U +

(
− ∂g∂x (γ(t))

)
V = 0.

Hence the determinant of the matrix associated with system (12) equals ddtg(γ(t)) =
0 so g(γ(t)) = 0. Given that h is a common factor of f and g, we conclude that
i0(f, g) = +∞. □

Remark 3.4. Proposition 3.3 does not hold when the characteristic p of the field
K is positive: consider f(x, y) = yp + xp+1 and g(x, y) = x + y, then µ(f) = +∞
but i0(f, [f, g]) = p2.
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